Способ контроля динамической вязкости жидкости

Изобретение относится к методам контроля веществ, находящихся в жидком состоянии, и может быть использовано для автоматического измерения динамической вязкости жидкости. Способ контроля динамической вязкости жидкости при текущей температуре, в котором динамическая вязкость определяется произведением динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости. Техническим результатом является обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента. 1 ил.

 

Изобретение относится к приборам и методам контроля веществ, находящихся в жидком состоянии и может быть использовано для автоматического измерения динамической вязкости жидкости.

Известен способ измерения вязкости жидкости с помощью ротационного вискозиметра и устройство для его реализации (Вискозиметры автоматические ротационные ВАР-5М. Руководство по эксплуатации 5Ж2.842.008 РЭ). Способ заключается в приведении во вращательное движение с постоянной угловой скоростью вращающегося элемента, отделенного от воспринимающего элемента слоем контролируемой жидкости, и измерении момента вращения, действующего на воспринимающий элемент. При этом о вязкости контролируемой жидкости судят по значению момента вращения, действующего на воспринимающий элемент. Устройство содержит привод постоянной угловой скорости, укрепленный на его валу вращающийся элемент, воспринимающий элемент, который установлен на упругом элементе и измерительный преобразователь угла поворота воспринимающего элемента.

Недостатком известного способа является необходимость поддержания постоянной угловой скорости вращающегося элемента.

Технический результат - обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента.

Технический результат достигается тем, что способ контроля динамической вязкости жидкости, согласно изобретения, динамическая вязкость жидкости при текущей температуру равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.

Новизна заключается в том, что контроль динамической вязкости жидкости осуществляется за счет измерения угловой скорости вращающегося элемента, погруженного в жидкость при разных температурах.

Изобретение поясняется чертежом.

Приводной электродвигатель 1, угловая скорость ротора которого измеряется с помощью энкодера 2, соединен посредством вала 3 с вращающимся цилиндром 4, помещенным внутри неподвижного цилиндра 5, наполненного исследуемой жидкостью, температура которой определяется с помощью датчика температуры 6.

Реализуется предлагаемый динамический метод контроля динамической вязкости жидкости следующим образом.

На начальном этапе, когда вал 3 отсоединен от приводного электродвигателя 1, приводной электродвигатель 1 запускается в пределах от нуля до номинальной угловой скорости и на каждом этапе приращения угловой скорости определяется угловое ускорение:

(1)

где dω – изменение угловой скорости, с-1, dt1 – время за которое произошло изменение угловой скорости dω, с.

Для диапазона угловых скоростей от нуля до номинальной угловой скорости среднее значения углового ускорения в выражение (1) принимает вид:

(2)

где – номинальная угловая скорость вала электродвигателя, с-1, – время разгона электродвигателя в диапазоне от нуля до номинальной угловой скорости, с.

При этом среднее значение вращающего момента М, которое развивает приводной электродвигатель 1, определяется как:

(3)

где – коэффициент, характеризующий механические и добавочные потери в роторе электродвигателя, – приведенный к оси вращения ротора момент инерции вращающихся масс электродвигателя, кг м2.

Далее приводной электродвигатель 1 останавливается и к его ротору подсоединяется вал 3 и вращающийся цилиндр 4. Суммарный момент инерции вала 3 и присоединенному к нему вращающегося цилиндра 4 известен (может быть определен методом крутильных колебаний или расчетным методом) и равен .

Затем приводной электродвигатель 1 запускается и определяется значение углового ускорения системы вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», на каждом этапе приращения угловой скорости в пределах от нуля до номинальной угловой скорости:

(4)

Среднее значения углового ускорения при разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости, выражение (4) принимает вид:

(5)

где – время разгона приводного электродвигателя 1 от нуля до номинального угловой скорости, с.

Среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4» равно:

. (6)

Поскольку при первом и втором запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражения (3) и (6) можно приравнять и определить момент инерции вращающихся масс электродвигателя с учетом коэффициента потерь:

(7)

При разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости во время первого и второго запусков:

, (8)

а , (9)

Подставляя (8) и (9) в (7) получаем:

(10)

Далее для контроля динамической вязкости исследуемой жидкости, полностью заполняем пространство между вращающимся цилиндром 3 и неподвижным цилиндром 4 по уровню верхней кромки вращающегося цилиндра 3, определяем температуру исследуемой жидкости с помощью датчика температуры 6 и запускаем приводной электродвигатель 1.

При вращении вращающегося цилиндра 3 будет создаваться сила трения между вращающимся цилиндром 3 и исследуемой жидкостью, которая будет создавать момент трения. Тогда среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», определится:

, (11)

где - момент трения, обуславливаемый вязкостью исследуемой жидкости,

- момент инерции сил трения, создаваемых вязкостью исследуемой жидкости.

Поскольку при первом, втором и третьем запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражений (6) и (11) приравниваем:

(12)

Из (12) с учетом (7), (8), (9), и :

(13)

Из (13) момент трения, обусловленный вязкостью жидкости:

(14)

Зная динамическую вязкость исследуемой жидкости при температуре определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости и вычислим момент трения :

(15)

Определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости при температуре исследуемой жидкости и вычислим момент трения :

(16)

Соотношение динамических вязкостей исследуемой жидкости и при температурах и пропорционально соотношению крутящих моментов и :

(17)

Выделим из (17) искомый коэффициент динамической вязкости при температуре :

(18)

Способ контроля динамической вязкости жидкости отличающийся тем, что динамическая вязкость жидкости при текущей температуре равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости к времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.



 

Похожие патенты:

Изобретение относится к способу измерения вязкости. Заявленный способ измерения вязкости включает: (i) этап получения изображения капли в статическом состоянии без вибрации; (ii) этап применения вибратора для сообщения вибрации капле и получения изображения динамического состояния, в котором капля максимально вытянута в горизонтальном направлении или максимально вытянута в вертикальном направлении; (iii) этап получения скорости изменения статической кривизны и скорость изменения динамической кривизны границы капли из изображений, полученных на этапах (i) и (ii); и (iv) этап подстановки отношения скорости изменения статической кривизны к скорости изменения динамической кривизны границы капли в уравнение взаимодействия, скорректированное для вибратора, чтобы получить вязкость капли.

Изобретение относится к области измерительной техники и может быть использовано для определения вибрационным методом изменения сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры.

Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость.

Изобретение относится к области испытаний и исследований, а именно к способам измерения числа падения для контроля качества зерновых культур по альфа-амилазной активности.

Изобретение относится к устройствам для непрерывного контроля процесса структурообразования молочно-белкового сгустка при производстве сыров и другой молочной продукции.

Изобретение относится к области исследования степени загрязнения легко текучих смазочных материалов продуктами изнашивания пар трения механических систем, например в двигателях, механизмах, машинах и приборах.

Изобретение относится к области измерительной техники, предназначено для измерения вязкости различных связных грунтов и может быть применено при проведении инженерных изысканий для строительства зданий и сооружений.

Изобретение относится к области определения вибрационным методом сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры.

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5), в которую помещен установленный на платформе (7) цилиндрический стакан (6) для исследуемой жидкости.

Изобретение относится к медицинской технике, а именно к анализаторам для автоматического определения показателей гемостаза (коагуляторам). .
Наверх