Акселерометр

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии. Акселерометр содержит последовательно соединенные пьезоэлектрический преобразователь, N-разрядный аналого-цифровой преобразователь, микроконтроллер, N-разрядный цифроаналоговый преобразователь, электромагнит, пробную массу. Технический результат – упрощение измерения кажущегося ускорения и расширение диапазона его измерения. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии.

Известны маятниковые акселерометры, предназначенные для измерения кажущегося ускорения, содержащие маятник (чувствительный элемент) и цепь обратной связи (датчик положения, усилитель, исполнительный элемент) [Командно-измерительные приборы / Под ред. Назарова Б.И. - М.: МО СССР, 1975].

Известен способ компенсационного измерения кажущегося ускорения [Лукьянов Д.П. Акселерометры инерциальных систем навигации: Конспект лекций - Л.: ЛЭТИ, 1983. - 47 с.], заключающийся в том, что кажущееся ускорение, воздействуя на пробную массу, создает момент, который компенсируют при помощи момента, создаваемого "электрической пружиной", состоящей из датчика угла, усилителя и датчика моментов, при этом ток датчика моментов пропорционален кажущемуся ускорению. Этот способ позволяет создавать прецизионные акселерометры компенсационного типа с разрешающей способностью в несколько микро g. Однако такие акселерометры очень дороги.

Известен способ микромеханического преобразования кажущегося ускорения [Лукьянов Д.П., Скворцов В.Ю. Микроэлектронные акселерометры инерциальных систем навигации: Учеб. пособие / СПбГЭТУ "ЛЭТИ". СПб., 1999. 60 с.], заключающийся в том, что кажущееся ускорение, воздействуя на пробную массу, подвешенную на упругом подвесе, вызывает микроперемещение пробной массы, которое измеряют с помощью емкостных датчиков. Этот способ позволяет создавать микромеханические акселерометры различного диапазона измерения. Преимуществом микромеханических акселерометров является их дешевизна, а недостатком - низкая точность и нестабильность.

Общим недостатком данных устройств является сложность, высокая стоимость и существенное уменьшение точности при проведении измерений на границах диапазона работы акселерометра.

Наиболее близким по техническому исполнению к предложенному устройству является акселерометр [Патент №2566655, РФ, Гупалов В.И.], содержащий пьезоблок, генератор знакопеременного сигнала, пьезоэлектрический возбудитель, два идентичных пьезоэлектрических преобразователя, два усилителя заряда, дифференциальный усилитель и преобразователь амплитуды в сигнал постоянного тока.

Недостатками данного устройства являются сложность и требование идентичности пьезоэлектрических преобразователей, выполнить которое достаточно сложно.

Заявленное устройство направлено на упрощение решения задачи измерения кажущегося ускорения и расширение диапазона его измерения.

Поставленная задача возникает при измерении ускорения во время различных виброиспытаний и гравиметрических исследований, навигационных измерений и пр.

Сущность изобретения состоит в том, что в устройство, содержащее пьезоэлектрический преобразователь, пробную массу, введены N-разрядный аналого-цифровой преобразователь, микроконтроллер, N-разрядный цифро-аналоговый преобразователь, электромагнит, выход пьезоэлектрического преобразователя подключен ко входу N-разрядного аналого-цифрового преобразователя, N-разрядный выход аналого-цифрового преобразователя подключен к N-разрядному входу микроконтроллера, управляющий N-разрядный выход микроконтроллера подключен к N-разрядному входу цифро-аналогового преобразователя, выход которого подключен ко входу электромагнита, электромагнит, пробная масса и пьезоэлектрический преобразователь расположены по одной оси, пробная масса жестко соединена с пьезоэлектрическим преобразователем, изготовлена из магнитного материала и находится в зоне максимального влияния электромагнита, а выходом устройства является информационный N-разрядный выход микроконтроллера.

На чертеже представлена функциональная схема акселерометра.

Устройство состоит из пьезоэлектрического преобразователя 1, N-разрядного аналого-цифрового преобразователя 2, микроконтроллера 3, N-разрядного цифро-аналогового преобразователя 4, электромагнита 5, пробной массы 6.

Выход пьезоэлектрического преобразователя 1 подключен ко входу N-разрядного аналого-цифрового преобразователя 2, N-разрядный выход аналого-цифрового преобразователя 2 подключен к N-разрядному входу микроконтроллера 3, управляющий N-разрядный выход микроконтроллера 3 подключен к N-разрядному входу цифро-аналогового преобразователя 4, выход N-разрядного цифро-аналогового преобразователя 4 подключен ко входу электромагнита 5.

Выходом устройства является информационный N-разрядный выход микроконтроллера 3.

Пьезоэлектрический преобразователь 1, электромагнит 5 и пробная масса 6 расположены по одной оси. Пробная масса 6 жестко соединена с пьезоэлектрическим преобразователем, изготовлена из магнитного материала и находится в зоне максимального влияния электромагнита 5.

N-разрядный аналого-цифровой преобразователь 2 способен осуществлять преобразование двуполярного сигнала, например, может быть выполнен аналогично описанному в [16-разрядные АЦП с входным напряжением ±5 В, скоростью преобразования 500/250 квыб/сек и встроенным ИОН / Аналоговый мир Maxim. Новые микросхемы. Выпуск №2, 2013 г., стр. 5].

В свою очередь, N-разрядный цифро-аналоговый преобразователь 4 способен осуществлять формирование на выходе двуполярного сигнала и может быть выполнен, например, аналогично описанному в [18-бит прецизионный ЦАП с цифровым управлением смещения и усиления с интерфейсом SPI / Аналоговый мир Maxim. Новые микросхемы. Выпуск №2, 2013 г., стр. 13].

N-разрядный аналого-цифровой преобразователь 2 и N-разрядный цифро-аналоговый преобразователь 4 могут входить в состав микроконтроллера 3. Устройство работает следующим образом.

При возникновении ускорения «а» в направлении оси ОХ на пробную массу 6 действует сила инерции F=-ma, где а - ускорение, m - ее масса. Пробная масса 6 деформирует пьезоэлектрический преобразователь 1. На выходе пьезоэлектрического преобразователя 1 возникает импульсный электрический сигнал соответствующей полярности с амплитудой, пропорциональной ускорению «а». Данный сигнал поступает на вход N-разрядного аналого-цифрового преобразователя 2, с выхода которого соответствующий двоичный код Кt поступает на N-разрядный вход микроконтроллера 3. Микроконтроллер 3 осуществляет суммирование двоичного N-разрядного кода Кt, полученного с выхода аналого-цифрового преобразователя 2 в текущий момент времени t, с двоичным N-разрядным кодом К(t-1), хранящимся в микроконтроллере 3 с предыдущего (t-1)-го шага (в начальный момент времени хранящийся в микроконтроллере 3 код равен нулю). Результат суммирования Кt(t-1) запоминается в микроконтроллере 3 и с его управляющего N-разрядного выхода поступает далее в N-разрядный цифро-аналоговый преобразователь 4.

Сигнал, снимаемый с выхода N-разрядного цифро-аналогового преобразователя 4, формирует на входе электромагнита 5 ток соответствующей амплитуды, приводящий к созданию действующей на пробную массу 6 силы электромагнитной индукции, равной по величине силе инерции F и противоположно ей направленной.

Деформация пьезоэлектрического преобразователя 1 становится равной нулю, что приводит к появлению на его выходе импульса противоположной полярности. Данный сигнал поступает на вход аналого-цифрового преобразователя 2, с выхода которого соответствующий двоичный код поступает на вход микроконтроллера 3. В течение времени осуществления компенсации деформации пьезоэлектрического преобразователя 1 (которое известно и фиксировано) микроконтроллер 3, получив двоичный код с выхода аналого-цифрового преобразователя 2, суммирование с двоичным кодом, хранящимся в микроконтроллере 3, не производит.

Измеряемое ускорение вычисляется в микроконтроллере 3 по формуле:

где а - измеряемое ускорение;

F - сила инерции;

Кп - коэффициент пропорциональности между создаваемой силой электромагнитной индукции, равной по величине силе инерции, и значением двоичного кода на выходе N-разрядного аналого-цифрового преобразователя 2;

m - масса пробной массы 6.

Результат вычисления ускорения в виде N-разрядного кода поступает с информационного N-разрядного выхода микроконтроллера 3 на выход устройства.

Далее процесс повторяется - пьезоэлектрический преобразователь 1 находится в исходном (ненагруженном) состоянии и готов к новой деформации.

Таким образом, в результате компенсации силы инерции, действующей на пробную массу, возможно измерение ускорения, амплитуда которого лежит за пределами верхней границы диапазона измерения пьезоэлектрического преобразователя.

Простота данного акселерометра и возможность расширения диапазона измерения пьезоэлектрического преобразователя делают его весьма перспективным при разработке и создании навигационных систем, а также аппаратуры для виброиспытаний и гравиметрических исследований.

Акселерометр, содержащий пьезоэлектрический преобразователь, пробную массу, отличающийся тем, что в него введены N-разрядный аналого-цифровой преобразователь, микроконтроллер, N-разрядный цифроаналоговый преобразователь, электромагнит, выход пьезоэлектрического преобразователя подключен к входу N-разрядного аналого-цифрового преобразователя, N-разрядный выход аналого-цифрового преобразователя подключен к N-разрядному входу микроконтроллера, управляющий N-разрядный выход микроконтроллера подключен к N-разрядному входу цифроаналогового преобразователя, выход которого подключен к входу электромагнита, электромагнит, пробная масса и пьезоэлектрический преобразователь расположены по одной оси, пробная масса жестко соединена с пьезоэлектрическим преобразователем, изготовлена из магнитного материала и находится в зоне максимального влияния электромагнита, а выходом устройства является информационный N-разрядный выход микроконтроллера.



 

Похожие патенты:

Группа изобретений относится к устройству для измерения ускорения. Устройство для измерения ускорения содержит пьезоэлектрическую систему, сейсмическую массу и систему предварительного напряжения, при этом сейсмическая масса имеет два элемента массы, положительные пьезоэлектрические заряды электрически снимаются с первого элемента массы в качестве сигналов ускорения, отрицательные пьезоэлектрические заряды электрически снимаются со второго элемента массы в качестве сигналов ускорения.

Группа изобретений относится к медицине, а именно к пульсоксиметру, использующему акселерометр для обнаружения пульса субъекта. Пульсометр для обнаружения пульса субъекта в соответствии со способом, содержит: основу, причем основа выполнена с возможностью расположения соответствующих вертикальных осей (ZR) и (ZL) акселерометров (41R) и (41L) перпендикулярно поверхности тела субъекта и расположения соответствующих продольных осей (XR) и (XL) и соответствующих поперечных осей (YR) и (YL) акселерометров (41R) и (41L) параллельно поверхности тела субъекта, многоосевые акселерометры (41R, 41L), прикрепленные к основе для генерирования сигналов (AZR, AZL) отличающихся режимов, отражающих измерение акселерометрами физиологического движения субъекта, создаваемого системой кровообращения, относительно осей (42R, 42L) измерения ускорения для генерирования сигналов (AXR, AXL, AYR, AYL) общего режима, отражающих измерение акселерометрами (41R, 41L) постороннего движения субъекта, характеризующего движение тела или части тела субъекта, возникающее вследствие приложения силы, источник которой является посторонним по отношению к телу, относительно осей (42R, 42L) измерения ускорения, причем основа содержит носовой зажим, выполненный с возможностью установки акселерометров (41R, 41L) на носу субъекта, причем носовой зажим дополнительно включает поворотный носовой зажим, конструктивно выполненный с возможностью прикрепления акселерометров (41R, 41L) к правой и левой сторонам переносицы субъекта, посредством чего расположенная ниже носовая кость жестко поддерживает угловую ориентацию акселерометров (41R, 41L) относительно друг друга и относительно носа; и детектор пульса, функционально соединенный с многоосевыми акселерометрами (41R, 41L) для генерирования сигнала (PS) пульса как функции вертикальной ориентации осей (42R, 42L) измерения ускорения посредством суммирования сигналов (AZR, AZL) отличающихся режимов и удаления сигналов (AXR, AXL, AYR, AYL) общего режима, с возможностью использования векторов ускорения силы тяжести по осям (42R) и (42L) XYZ для определения угла между акселерометрами (41R) и (41L) или относительно отдельных базовых осей.

Изобретение относится к интегральным измерительным элементам величин угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит восемь дополнительных неподвижных электродов емкостных преобразователей перемещений, шесть дополнительных подвижных электродов емкостных преобразователей перемещений, два подвижных электрода электростатических приводов, восемь неподвижных электродов электростатических приводов, двенадцать дополнительных опор, шестнадцать П-образных систем упругих балок, четыре Г-образные системы упругих балок, дополнительную инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно полупроводниковой подложки.

Изобретение относится к способам изготовления устройств для измерений сейсмического или акустического сигналов. Техническим результатом является повышение жесткости конструкции преобразующего элемента и его неподвижности относительно корпуса.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсмической съемки. Описано устройство для сейсмической съемки, содержащее корпус, ускоряемую массу, по меньшей мере один датчик, выполненный с возможностью обнаружения перемещения ускоряемой массы относительно корпуса, электронную схему, соединенную с упомянутым по меньшей мере одним датчиком и выполненную с возможностью получения и обработки выходного сигнала этого датчика, и источник питания, выполненный с возможностью подачи электрической энергии в электронную схему и представляющий собой составную часть ускоряемой массы.

Изобретение относится к области измерительной и микросистемной техники, а именно к интегральным измерительным элементам величин ускорения. Акселерометр содержит полуизолирующую подложку, основание неподвижного электрода, основание электростатического актюатора, якорную область подвижного электрода, технологический слой в области неподвижного электрода, технологический слой в области электростатического актюатора, упругий подвес, контактную область неподвижного электрода, контактную область электростатического актюатора, контактную область подвижного электрода, инерционную массу, неподвижный электрод, неподвижный электрод электростатического актюатора, контакт к подвижному электроду, подвижный электрод электростатического актюатора, подвижный электрод.

Изобретения относятся к измерительной технике объективного контроля мастерства спортсменов и могут быть использованы в различных видах спорта, например футболе. Предложены способ и устройство для реализации воспроизведения эталонного удара по мячу в футболе с конкретной точки поля по ускорению пробивающей по мячу ноги, фиксируемого с помощью датчика ускорения, установленного на голеностопе.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры раскаленных газовых потоков, включая пламена.

Группа изобретений относится к датчику с электростатическим маятниковым акселерометром и к способу управления таким датчиком. Акселерометрический датчик содержит по меньшей мере один электростатический маятниковый акселерометр, имеющий первый и второй неподвижные электроды, закрепленные на корпусе и соединенные со схемой возбуждения, и третий электрод, установленный на маятнике, соединенном с корпусом, с возможностью перемещения и связанный с детекторной схемой.

Изобретение относится к области микросистемной техники, в частности к приборам для измерения величины линейного ускорения. Интегральный датчик ускорения содержит выполненные из полупроводникового материала за одно целое опорную рамку и закрепленную на одном из ее плеч с помощью упругих консольных элементов с тензорезистивными преобразователями деформации инерционную массу, при этом датчик дополнительно содержит пару упругих торсионных элементов, расположенных на противоположных плечах опорной рамки перпендикулярно упругим консольным элементам и соединенных с инерционной массой, при этом тензорезистивные преобразователи деформации выполнены на основе кремниевых нанонитей, оснащенных измерительными электродами.

Изобретение относится к микромеханическим акселерометрам, конкретно к электронным преобразователям, применяемым в акселерометрах с емкостным датчиком угла и магнитоэлектрическим датчиком момента.

Изобретение относится к области геофизических исследований и предназначено для измерения скорости движения грунта, объектов и элементов их конструкций в ближней зоне крупномасштабных взрывов зарядов химических взрывчатых веществ.

Изобретение относится к измерительной технике и может быть использован в системах ориентации и навигации для измерения ускорения. Технический результат – повышение точности измерения ускорения.

Изобретение относится к области измерительной и микросистемной техники, а именно к интегральным измерительным элементам величин ускорения. Акселерометр содержит полуизолирующую подложку, основание неподвижного электрода, основание электростатического актюатора, якорную область подвижного электрода, технологический слой в области неподвижного электрода, технологический слой в области электростатического актюатора, упругий подвес, контактную область неподвижного электрода, контактную область электростатического актюатора, контактную область подвижного электрода, инерционную массу, неподвижный электрод, неподвижный электрод электростатического актюатора, контакт к подвижному электроду, подвижный электрод электростатического актюатора, подвижный электрод.

Изобретение относится к области измерительной и микросистемной техники, а именно к интегральным измерительным элементам величин ускорения. Акселерометр содержит полуизолирующую подложку, основание неподвижного электрода, основание электростатического актюатора, якорную область подвижного электрода, технологический слой в области неподвижного электрода, технологический слой в области электростатического актюатора, упругий подвес, контактную область неподвижного электрода, контактную область электростатического актюатора, контактную область подвижного электрода, инерционную массу, неподвижный электрод, неподвижный электрод электростатического актюатора, контакт к подвижному электроду, подвижный электрод электростатического актюатора, подвижный электрод.

Использование: для создания устройств, преобразующих механическое движение в электрический сигнал. Сущность изобретения заключается в том, что способ изготовления преобразующего элемента молекулярно-электронного датчика включает сборку преобразующего элемента в виде слоистой структуры из четырех сетчатых металлических электродов и расположенных между ними трех разделителей, при этом в качестве разделителей используют пластиковые разделители с выполненными в них отверстиями, при этом слоистую структуру нагревают до температуры размягчения материала пластиковых разделителей, контролируют приклеивание пластиковых разделителей, сохраняя зазор между электродами, и вклеивают в пластиковый держатель.

Использование: для увеличения коэффициента преобразования молекулярно-электронного датчика движения. Сущность изобретения заключается в том, что увеличение коэффициента преобразования молекулярно-электронного датчика, чувствительный элемент которого состоит из двух расположенных в заполненных рабочей жидкостью одном или многих каналах преобразования пар анод/катод, осуществляют при движении рабочей жидкости по каналу, изменяя разность потенциалов между анодом и электролитом в прилегающей к аноду области, при этом увеличивают концентрацию активных ионов на аноде, расположенном выше по течению жидкости, и уменьшают концентрацию активных ионов на аноде, расположенном ниже по течению жидкости.

Изобретение относится к техническим средствам управления манипуляционным роботом в различных режимах движения. Устройство управления аварийным торможением робота-манипулятора использует для остановки манипулятора отключение питания приводов степеней подвижности.

Использование: для измерения линейных или угловых колебаний. Сущность изобретения заключается в том, что датчик с микроэлектронным первичным измерительным преобразователем инерционного типа содержит микросхему первичного измерительного преобразователя и вспомогательные электронные компоненты, а также содержит первую и вторую печатные платы, на первой из которых установлены микросхема первичного измерительного преобразователя и вспомогательные электронные компоненты, которые соединены печатными проводниками в соответствии с электрической схемой, а также содержит плоскую рамку, внешний периметр которой соответствует периметрам первой и второй печатных плат, причем микросхема первичного измерительного преобразователя и вспомогательные электронные компоненты расположены с одной стороны первой печатной платы внутри плоской рамки, которая приклеена к первой печатной плате, а вторая печатная плата приклеена к другой стороне плоской рамки, в одной из сторон которой выполнен вырез для размещения соединителя, который припаян к контактным площадкам печатного монтажа первой печатной платы в соответствии с электрической схемой.

Изобретение относится к экспериментальной гидромеханике морских инженерных сооружений и касается методов испытания трансформации волн в опытовом бассейне на наклонном дне и оборудования для его проведения.
Наверх