Устройство контроля засорённости металлолома в движущихся железнодорожных полувагонах

Изобретение относится к системам дистанционного мониторинга металлолома в движущихся железнодорожных вагонах. Устройство контроля засоренности металлолома в движущихся железнодорожных полувагонах содержит блок обработки и управления, средства для измерения температуры, видеокамеру, зону измерения, выполненную в виде рамки П-образной формы из изолирующего материала, по периметру которой намотаны измерительная катушка и силовая катушка, магнитно-резистивные датчики, закрепленные на внутренних боковых поверхностях рамки с двух сторон на всю высоту полувагона, выходы которых через коммутатор соединены с сервером, лазерные датчики, один из которых установлен в центре внутренней стороны навеса, второй - на внутренней боковой поверхности рамки, выходы датчиков через коммутатор соединены с сервером, блок обработки и управления, состоящий из установленных в нем процессора с монитором, шкафов с оборудованием, в которых устранены генератор переменного тока, коммутатор и сервер. Технический результат - повышение точности определения засоренности металлолома железнодорожных вагонов и других контейнеров. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к системам дистанционного мониторинга металлолома в движущихся железнодорожных вагонах, а именно к системам определения степени его засоренности немагнитными материалами путем измерения массы ферромагнитного груза («магнитной» массы).

Известна «Hermann HCVC 250250(-2i)» (техническая характеристика http://www.bezopasnost.ru/upload/iblock/f2e/HCVC%20250250n-2isa.pdf), включающая стальную конструкцию из стальных панелей, размеры туннеля 2700 мм в ширину и 2600 мм в высоту, с возможностью его удлинения, экранированные раздвижные дверцы на входе и выходе с пневматическим или электрическим приводом. Рамка оснащена двумя генераторами, с двухлучевой системой излучения.

Недостатками данного устройства является возможность искажения видеосигнала путем использования специальных приемов укладки груза и различных способов экранирования рентгеновского излучения, в том числе и металлическими листами, при этом рентгеновский принцип измерений производит только фиксацию засора.

Известен промышленный металлодетектор для конвейерных линий (патент РФ №2509305, опубл. 27.10.2013 г.), включает катушки возбуждения, охватывающей зону контроля, генератор переменного тока, создающего магнитное поле в зоне контроля, датчика скорости, дополнительной приемной катушки, расположенной параллельно передающей, модуля центрального процессора, приемные катушки расположены перпендикулярно передающей, и имеют меньший размер Данные со всех АЦП, датчика скорости и еще одной приемной катушки, включенной параллельно передающей, а также данные с весов (опционально) подаются на блок центрального процессора, в котором происходит определение присутствия металла. Также параллельно передающей катушке включена петля калибровки, которая периодически замыкается, что позволяет прибору самостоятельно производить автопроверку и автокалибровку.

Недостатком данного устройства является только качественное определение металла без возможности определения его массы.

Известен промышленный металлодетектор для определения процентного содержания ферромагнетика в горной руде (патент РФ №2506582, опубл. 10.02.2014 г.), состоящий из катушек возбуждения, генератора переменного тока, который создает переменное магнитное поле возбуждения, приемной катушки, расположенной параллельно передающим посредине, сумматора, ЦАП сигнала компенсации х.х. приемной катушки, АЦП, датчика скорости, дополнительной приемной катушки, включенной параллельно передающей, весов, блока центрального процессора, петли калибровки, расположенной параллельно приемной катушке, при этом высокая равномерность измерения величины отклика достигается за счет использования нескольких передающих катушек для создания равномерного поля, алгоритма обработки с учетом сигнала дополнительной катушки, расположенной параллельно передающей, вырабатывания сигнала компенсации х.х. с учетом перераспределения гармоник основной частоты и компенсации сигнала х.х. с учетом изменяющейся обстановки (климатические, механические изменения) динамически, т.е. без падения чувствительности в режиме реального времени.

Недостатком данного устройства является тяжелая масштабируемость и отсутствие учета влияния тары.

Известна система автоматического анализа и сигнализации о наличии немагнитных грузов в железнодорожных вагонах (патент РФ №120778, опубл. 27.09.2012 г.), содержащая включающей измерительную рамку для создания магнитного поля, к измерительной рамке, установленной с возможностью проезда через нее вагона, все проводники которой, включая катушку индуктивности, выполнены из медного провода большого сечения, подсоединены линии питания и связи, блок обработки данных, блок автоматического анализа и сигнализации.

Недостатком данного устройства является измерение только интегральных характеристик без учета зависимости распределения магнитного поля.

Известна установка автоматического мониторинга металлолома в движущихся железнодорожных вагонах (патент РФ №129660, опуб. 27.06.2013 г.), включающая измерительную рамку для создания магнитного поля, блок питания, блок обработки данных, блок автоматического анализа и сигнализации. Измерительная рамка выполнена в виде двух одинаковых плоских скрещенных катушек, ориентированных своими плоскостями взаимно перпендикулярно друг к другу и расположенных с возможностью прохождения сквозь них вагонов. При этом намагничивающие токи в катушках могут задаваться различными по амплитуде, частоте и фазе, либо равными по амплитуде и частоте, но сдвинуты по фазе на 90°, обеспечивая этим самым вращение магнитного поля в горизонтальной плоскости измерительной зоны рамки.

Недостатком данного устройства является измерение только интегральных характеристик без учета зависимости распределения магнитного поля.

Известен способ определения магнитной массы железнодорожных вагонов и система для его осуществления (патент РФ №2556831, опубл. 20.07.2013 г.), принятая за прототип, включающая средства определения добротности и индуктивности, средства для измерения температуры, ультразвуковой датчик уровня вагона, фотоэлектрические датчики положения вагона, оптические датчики скорости, видеокамеру, датчики объемной плотности, а также блок обработки и управления.

Недостатком данного устройства является измерение только интегральных характеристик без учета зависимости распределения магнитного поля.

Техническим результатом является создание устройства с повышенной точностью определения засоренности металлолома железнодорожных вагонов и других контейнеров.

Технический результат достигается тем, что зона измерения выполнена в виде рамки П-образной формы из изолирующего материала, по периметру которой намотаны измерительная катушка и силовая катушка, на рамке дополнительно установлены магнитно-резистивные датчики закрепленные на внутренних боковых поверхностях рамки с двух сторон на всю высоту полувагона, выходы которых через коммутатор соединены с сервером, лазерные датчики, один из которых установлен в центре внутренней стороны навеса, второй - на внутренней боковой поверхности рамки, выходы датчиков через коммутатор соединены с сервером, блок обработки и управления состоящий из установленных в нем процессора с монитором, шкафов с оборудованием, в которых устранены генератор переменного тока, коммутатор и сервер, блок обработки и управления связан с рамкой кабель-каналами с проводами. Магнитно-резистивные датчики устанавливаются по всей ширине навеса на кронштейнах жестко закрепленных к внутренней поверхности навеса.

Устройство контроля засоренности металлолома в движущихся железнодорожных полувагонах поясняется следующей чертежами:

фиг. 1 - общая схема устройства;

фиг. 2 - сечение каркаса рамки;

фиг. 3 - рамка, фронтальный вид, где:

1 - рамка;

2 - магнитно-резистивные датчики;

3 - навес;

4 - лазерный датчик;

5 - полувагон;

6 - блок обработки и управления;

7 - измерительная катушка;

8 - силовая катушка;

9 - шкаф для оборудования;

10 - генератор переменного тока;

11 - сервер;

12 - датчик температуры и влажности;

13 - коммутатор;

14 - видеокамера;

15 - процессор с монитором;

16 - кабель-каналами с проводами.

Устройство контроля засоренности металлолома в движущихся железнодорожных полувагонах состоит, зоны измерения, которая состоит из рамки 1 (фиг. 1) П-образной формы выполненной из изолирующего материала, например стеклотекстолита, по периметру которой намотаны (фиг. 1, 2) измерительная катушка 7 и силовая катушка 8. На внутренних боковых поверхностях рамки 1 (фиг. 1) с двух сторон закреплены на кронштейнах с возможностью съема магнитно-резистивные датчики 2, фиксирующие магнитные характеристики полувагона в 3-х направлениях. Магнитно-резистивные датчики 2 расположены по всей высоте полувагона для определения неравномерности загрузки. Магнитно-резистивные датчики 2 устанавливаются по всей ширине навеса 3 (фиг. 3) на кронштейнах жестко закрепленных к внутренней поверхности навеса 3. Выходы магнитно-резистивных датчиков 2 через коммутатор 13 соединены с сервером 11. В центре внутренней стороны навеса 3 (фиг. 1) установлены первый лазерный датчик 4, выход которого через коммутатор соединен с сервером 11, второй лазерный датчик 4 установлен на внутренней боковой поверхности рамки 1, его выход через коммутатор 13 соединен с сервером 11. В верхней части боковых стенок рамки 1 закреплен на креплениях с возможностью съема датчик температуры и влажности 12, выходы которого по кабельным линиям соединены с сервером 11. На внешней стороне по центру навеса 3 установлена видеокамера 14 соединенная по кабельной линии через коммутатор 13 с сервером 11. Около рамки 1 установлен блок обработки и управления 6, например бытовка контейнерного типа, связанный с рамкой 1 кабель-каналами с проводами 16. В блок обработки и управления 6 установлены процессор с монитором 15 и шкафы с оборудованием 9, в которых находятся генератор переменного тока 10, коммутатор и сервер 11.

Устройство работает следующим образом. Рамка 1 устанавливается с возможностью прохождения через нее полувагона 5. Лазерные датчики 4 фиксируют значения скорости, которое требуются для нормировки интегральных значений всех остальных измеряемых параметров, уровня загрузки, высоты бортов и габаритов полувагонов и передают эти данные на сервер, данные с датчик температуры влажности 12 так же передают данные о состоянии объекта на сервер. Генератор переменного тока 10, от которого запитывается силовая катушка 8, с определенным напряжением, током и частотой, создавая магнитное поле. С измерительной катушки 7 снимаются показания тока, напряжения и передаются для обработки на сервер 11 через коммутатор. Происходит одновременный синхронизированный сбор данных. После получения сервером 11 всех необходимых данных происходит процесс их обработки, результатом которого является значение массы груза металлолома, которое в последующем сравнивается с общей массой груза с вагон-весов. Разница представляет собой кол-во засоренности в вагоне с металлоломом. Данные с сервера 11 передается на процессор с монитором 15, которые фиксируются оператором или передаются по локальной сети в базу данных предприятий. Данные с видеокамеры 14 передаются на сервер 11, а затем на процессор с монитором 15 это дает возможность оператору вести наблюдение за прохождением вагонов через рамку 1 и в случае возникновения нештатной ситуации дать команду на прекращение работы.

Устройство позволяет более точно определить вес металлической и неметаллической частей груза, а следовательно можно определить уровень загрязненности металлолома непосредственно в железнодорожных полувагонах, а также в вагонах или контейнерах. Использование устройства возможно на предприятиях переработки металлолома, на железнодорожных узлах, в портах.

1. Устройство контроля засоренности металлолома в движущихся железнодорожных полувагонах, включающее зону измерения, блок обработки и управления, средства для измерения температуры, видеокамеру, отличающееся тем, что зона измерения выполнена в виде рамки П-образной формы из изолирующего материала, по периметру которой намотаны измерительная катушка и силовая катушка, на рамке дополнительно установлены магнитно-резистивные датчики, закрепленные на внутренних боковых поверхностях рамки с двух сторон на всю высоту полувагона, выходы которых через коммутатор соединены с сервером, лазерные датчики, один из которых установлен в центре внутренней стороны навеса, второй - на внутренней боковой поверхности рамки, выходы датчиков через коммутатор соединены с сервером, блок обработки и управления, состоящий из установленных в нем процессора с монитором, шкафов с оборудованием, в которых установлены генератор переменного тока, коммутатор и сервер, блок обработки и управления связан с рамкой кабель-каналами с проводами.

2. Устройство по п. 1, отличающееся тем, что магнитно-резистивные датчики устанавливаются по всей ширине навеса на кронштейнах, жестко закрепленных к внутренней поверхности навеса.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики. Прибор содержит процессорный блок (ПБ) 10 с узлом определения полного и остаточного ресурса (УОР) 17 и с клеммными разъемами (КР) 11, 12 для подключения выносного ферритометрического наконечника (ВФН) 20 и выносного ультразвукового толщиномера (ВУЗТ) 30, клавиатуру 40 для ввода необходимых дополнительных величин, а также данных необходимых измерений штатными измерительными средствами электростанции и дисплей 50 для визуализации выходных данных.

Группа изобретений относится к магнитно-резонансной визуализации (MRI). Сущность изобретений заключается в том, что создают инструктирующую карту для использования при размещении одного спектроскопического вокселя в области, представляющей интерес, при одновоксельной магнитно-резонансной спектроскопии.

Группа изобретений относится к магнитно-резонансному радиочастотному передающему устройству для целей магнитно-резонансного исследования. Магнитно-резонансное радиочастотное передающее устройство для генерации и приложения радиочастотного возбуждающего поля B1 для целей магнитно-резонансного исследования содержит катушку типа «птичья клетка» и множество из радиочастотных усилительных блоков для обеспечения радиочастотной мощности на частоте магнитного резонанса для катушки типа «птичья клетка» посредством множества из М портов активации, выбранных из множества из N портов активации.

Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности.

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля.

Изобретение относится к магнитным измерениям и предназначено для контроля значений параметров магнитного поля (магнитного состояния) ферромагнитных объектов сложной формы.

Группа изобретений относится к медицинской технике, а именно к средствам мониторинга пациентов с использованием пространственно разнесенных антенн. Устройство для приема радиочастот (RF) при мониторинге пациентов содержит первую и вторую радиочастотные антенны в различных пространственных положениях или ориентациях, первый и второй радиочастотные приемники, каждый из которых соединен с соответствующей антенной из первой и второй радиочастотных антенн и которые осуществляют прием и демодуляцию радиочастотных сигналов по меньшей мере первой и второй несущих частот для восстановления пакетов данных по меньшей мере от первого датчика для медицинского мониторинга, который передает пакеты данных, содержащие информацию, относящуюся к первому показателю жизнедеятельности, в радиочастотном сигнале первой несущей частоты, и от второго датчика для медицинского мониторинга, который передает пакеты данных, содержащие информацию, относящуюся ко второму показателю жизнедеятельности, в радиочастотном сигнале второй несущей частоты, обрабатывающее или управляющее устройство, соединенное с первым и вторым радиочастотными приемниками и выполненное с возможностью управления этими радиочастотными приемниками для обеспечения циклического перехода между приемом и демодуляцией обоими приемниками радиочастотных сигналов первой несущей частоты одновременно с восстановлением избыточных пакетов данных, содержащих информацию, относящуюся к первому показателю жизнедеятельности, от первого датчика для медицинского мониторинга, и приемом и демодуляцией обоими приемниками радиочастотных сигналов второй несущей частоты одновременно с восстановлением избыточных пакетов данных, содержащих информацию, относящуюся ко второму показателю жизнедеятельности, от второго датчика для медицинского мониторинга, причем первый датчик для медицинского мониторинга передает пакеты данных с первой периодичностью, второй датчик для медицинского мониторинга передает пакеты данных со второй периодичностью и обрабатывающее устройство управляет приемниками для обеспечения циклического перехода между приемом сигналов первой и второй несущих частот таким образом, чтобы сигнал каждой несущей частоты принимался в течение заданного периода времени, причем в течение начального получения данных общая сумма циклически повторяющихся заданных периодов времени отличается от максимального временного интервала между операциями передачи пакетов для каждого из датчиков для медицинского мониторинга, причем обрабатывающее устройство дополнительно выполнено с возможностью регулирования заданных периодов времени на основе моментов поступления выбранных пакетов данных.

Группа изобретений относится к магнитно-резонансной томографии. Система магнитно-резонансной томографии для сбора магнитно-резонансных данных из зоны визуализации предписывает процессору, управляющему МРТ-системой, собирать магнитно-резонансные данные визуализации при включенном радиочастотном возбуждении радиочастотной системы; собирать радиочастотные данные шума с использованием катушки обнаружения РЧ шума, при этом радиочастотные данные шума собираются одновременно с магнитно-резонансными данными визуализации; собирать калибровочные магнитно-резонансные данные при выключенном радиочастотном возбуждении радиочастотной системы; собирать опорные радиочастотные данные с использованием катушки обнаружения РЧ шума, причем опорные радиочастотные данные собираются одновременно с калибровочными магнитно-резонансными данными; и вычислять калибровку шума с использованием опорных радиочастотных данных и калибровочных магнитно-резонансных данных.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Группа изобретений относится к радиочастотной катушке для использования в медицинской модальности, которая включает в себя систему магнитно-резонансной томографии.
Наверх