Система управления электроприводом транспортного средства



Система управления электроприводом транспортного средства
Система управления электроприводом транспортного средства
Система управления электроприводом транспортного средства
H02P25/062 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2690532:

Акционерное общество "Сарапульский электрогенераторный завод" (RU)

Изобретение относится к области электротехники и транспорта и может быть использовано в качестве системы управления электроприводом унифицированной машины технологического электротранспорта. Техническим результатом является повышение качества регулирования скорости вращения ротора асинхронного электродвигателя. Система управления содержит асинхронный электродвигатель, к которому подключен инвертор, преобразующий напряжение постоянного тока в переменный с регулируемой частотой и регулируемым напряжением в режиме широтно-импульсной модуляции. Система управления выполнена в виде микропроцессорной системы, силовой выход которой подключен к инвертору. Микропроцессорная система содержит первый, второй и третий аналоговые измерительные входы, а также первый, второй, третий и четвертый цифровые измерительные входы. К первому аналоговому измерительному входу подключен выход амперметра, измеряющего токи фаз на выходе инвертора, ко второму аналоговому измерительному входу подключен выход вольтметра, измеряющего напряжение постоянного тока на силовом выходе, а к третьему аналоговому измерительному входу подключен выход потенциометра акселератора транспортного средства. К первому цифровому измерительному входу подключен первый канал энкодера, установленного на валу электродвигателя, ко второму измерительному входу подключен второй канал энкодера, а к третьему и четвертому цифровым измерительным входам подключены соответственно датчики включения основного и стояночного тормозов; дополнительно к микропроцессорной системе подключен блок управления, выполненный в виде LCD-индикатора и блока ввода данных. 2 ил.

 

Изобретение относится к устройствам управления электродвигателями с помощью векторного управления и может быть использовано в качестве системы управления электроприводом унифицированной машины технологического электротранспорта.

Из уровня техники известна система векторного управления скоростью асинхронного двигателя (RU2422979C1, МПК Н02Р 21/02, Н02Р 27/04, опубл. 27.06.2011). Система содержит блок регулирования переменных, состоящий из двух контуров: контура регулирования намагничивающей составляющей тока статора и контура регулирования активной составляющей тока статора, первый и второй блоки координатных преобразований, блок векторного фильтра, первый, второй и третий блоки фазных преобразований, преобразователь частоты, блок датчиков тока фаз статора, блок датчиков главного потокосцепления двигателя в воздушном зазоре асинхронного двигателя, датчик угловой скорости и асинхронный двигатель. В структуру системы управления системы векторного управления введены модуль вычисления ЭДС и перекрестных связей и модуль вычисления экстремальных значений составляющих тока статора, связанные с контурами регулирования активной составляющей тока статора и регулирования намагничивающей составляющей тока статора.

Недостатком известного технического решения является его низкая технологичность, что обусловлено сложностью системы управления, связанную с наличием в ее конструкции большого числа дискретных элементов. Упомянутое обстоятельство в целом также снижает ее надежность.

Наиболее близким техническим решением к заявленному изобретению и выбранным в качестве прототипа признано устройство управления асинхронным электродвигателем (RU2193814C2, МПК Н02Р 21/00, опубл. 27.11.2001]. Устройство содержит инвертор, преобразующий напряжение постоянного тока в переменный с регулируемой частотой и регулируемым напряжением в режиме широтно-импульсной модуляции, и схему регулирования выходного напряжения инвертора путем изменения глубины модуляции по командам на изменение выходного напряжения, осуществляемое по командам на изменение составляющих намагничивающей и моментообразующей тока статора асинхронного двигателя, на который подается напряжение от инвертора.

Недостатком известного устройства являются ограниченные возможности по изменению параметров его работы, вследствие отсутствия в конструкции устройства ввода данных и средств хранения уставок регулятора.

Технической задачей, на решение которой направлено заявленное изобретение, является повышение качества регулирования скорости вращения ротора асинхронного электродвигателя.

Указанная задача решена тем, что система управления содержит асинхронный электродвигатель, к которому подключен инвертор, преобразующий напряжение постоянного тока в переменный с регулируемой частотой и регулируемым напряжением в режиме широтно-импульсной модуляции. При этом система управления выполнена в виде микропроцессорной системы, силовой выход которой подключен к инвертору. Микропроцессорная система содержит первый, второй и третий аналоговые измерительные входы, а также первый, второй, третий и -четвертый цифровые измерительные входы. К первому аналоговому измерительному входу подключен выход амперметра, измеряющего токи фаз на выходе инвертора, ко второму аналоговому измерительному входу подключен выход вольтметра, измеряющего напряжение постоянного тока на силовом выходе, а к третьему аналоговому измерительному входу подключен выход потенциометра акселератора транспортного средства. К первому цифровому измерительному входу подключен первый канал энкодера, установленного на валу электродвигателя, ко второму измерительному входу подключен второй канал энкодера, а к третьему и четвертому цифровым измерительным входам подключены, соответственно, датчики включения основного и стояночного тормозов; дополнительно к микропроцессорной системе подключен блок управления, выполненный в виде LCD-индикатора и блока ввода-данных.

Положительным техническим результатом, обеспечиваемым раскрытой выше совокупностью конструктивных признаков системы управления, является повышение качества регулирования скорости вращения ротора асинхронного электродвигателя электропривода транспортного средства, за счет применения датчиков обратной связи: амперметра, вольтметра, потенциометра и энкодера, подключенных к микропроцессорной системе, позволяющей реализовать эффективные алгоритмы векторного регулирования. Применение датчиков основного и стояночного тормозов позволяет реализовать автоматическое отключение системы управления, а блок управления - изменять параметры режимов работы системы управления, что обеспечивает возможность ее адаптации к любому асинхронному электродвигателю и добиться наиболее эффективных режимов работы последнего.

Изобретение поясняется чертежами, где на фиг. 1 показана структурная схема системы управления, а на фиг. 2 - блок управления.

Система управления электроприводом транспортного средства устроена следующим образом.

Объектом управления системы является асинхронный электродвигатель 1, к которому подключен инвертор 2, преобразующий напряжение постоянного тока в переменный с регулируемой частотой и регулируемым напряжением в режиме широтно-импульсной модуляции. Система управления выполнена в виде микропроцессорной системы 3, силовой выход 4 которой подключен к инвертору 2. Микропроцессорная система 3 содержит первый, второй и третий аналоговые измерительные входы 5, 6 и 7, а также первый, второй, третий и четвертый цифровые измерительные входы 8, 9, 10 и 11. К первому аналоговому измерительному входу 5 подключен выход амперметра, измеряющего токи фаз на выходе инвертора, ко второму аналоговому измерительному входу 6 подключен выход вольтметра, измеряющего напряжение постоянного тока на силовом выходе 4, а к третьему аналоговому измерительному входу 7 подключен выход потенциометра акселератора транспортного средства. К первому цифровому измерительному входу 8 подключен первый канал энкодера, установленного на валу электродвигателя, ко второму измерительному входу 9 подключен второй канал энкодера, а к третьему и четвертому цифровым измерительным входам 10 и 11 подключены, соответственно, датчики включения основного и стояночного тормозов; дополнительно к микропроцессорной системе подключен блок управления, выполненный в виде LCD-индикатора 12 и блока ввода-данных 13.

Более подробный пример возможной реализации системы управления рассмотрим на примере микропроцессорной системы, построенной на базе микроконтроллера, основанного на высокопроизводительном микропроцессорном ядре ARM Cortex-М3 с тактовой частотой до 80 МГц и производительностью 1.25 DMIPS/МГц. В качестве такого микроконтроллера может использоваться, например, микросхема серии 1986 ВЕ9х.

Микроконтроллер содержит микропроцессорное ядро 14, соединенное с помощью системной шины с FLASH-памятью программ 15, SRAM-памятью данных 16, аналого-цифровым преобразователем 17, энергонезависимой электрически перепрограммируемой памятью EEPROM 18, таймерами-счетчиками и входами внешних прерываний, входами/выходами которых являются выводы универсальных шестнадцатиразрядных двунаправленных портов ввода-вывода микроконтроллера, выполняющих основную или альтернативную функцию.

В приводимом примере реализации системы управления линия PA[1](TMR_CH1) микроконтроллера, являющаяся выходом таймера 1, подключена к силовому выходу 4, первый, второй и третий аналоговые измерительные входы 5, 6 и 7 подключены к линиям PD[2](ADC2]-PD[4]ADC4 порта D, при этом линии PD[0] и PD[1] порта D используются для подключения источника опорного напряжения аналого-цифрового преобразователя. Первый, второй, третий и четвертый цифровые измерительные входы 8, 9, 10 и 11 подключены к линиям PA[0](EXT_INT1}, PB[10](EXT_INT2), PE[15](EXT_INT3) и PC[13](EXT_INT4) портов А, В, Е и С, являющихся входами внешних аппаратных прерываний, позволяющих создавать на их основе надежные счетчики внешних событий. Шестнадцатиразрядный универсальный двунаправленный порт ввода-вывода F используется для подключения блока управления. При этом младшие восемь линий порта PF[0]-PF[7] используются для подключения LCD-индикатора, а старшие восемь PF[8]-PF[15] - для подключения блока ввода данных, выполненного в виде кнопочной клавиатуры, содержащей шестнадцать клавиш. Силовой выход 4 микропроцессорной системы 3 может быть реализован на основе транзисторных ключей. В качестве энкодера применяют промышленный инкрементальный прибор1 (1 Lenord+Bauer. Энкодеры инкрементальные и абсолютные, датчики скорости, EcoController, MiniCoder // Промышленная автоматика. URL: http://www.proavtomatika.ru/products/Lenord+Bauer/lenord.htm (дата обращения: 21.05.2018)), снабженный двумя измерительными каналами (традиционно обозначаемыми А и В), при этом смещение фаз между сигналами каналов составляет 90°. Для дополнительной защиты и обеспечения возможности аварийного останова системы управления при превышении температуры двигателя сверх допустимого значения, к одной из свободных линий порта D, например PD[5](ADC5), может быть через операционный усилитель подключен выход резистивного датчика температуры, установленного на корпусе двигателя (на структурной схеме условно не показан).

Система управления электроприводом транспортного средства работает следующим образом.

Первоначально систему управления устанавливают на платформу унифицированной машины технологического электротранспорта, подключают выход инвертора к электродвигателю, выходы аналоговых датчиков - амперметра, вольтметра и потенциометра акселератора транспортного средства - подключают к аналоговым измерительным входам 5, 6 и 7, а выходы цифровых датчиков - энкодера и датчиков включения тормозов - подключают, соответственно, к цифровым измерительным входам 8, 9, 10 и 11. Далее с помощью блока ввода данных 13 и LCD-индикатора 12 блока управления контролируют и при необходимости корректируют параметры программного регулятора, хранящиеся в энергонезависимой электрически перепрограммируемой памяти EEPROM 18 микроконтроллера. К таким параметрам, в частности, относятся следующие: частота управляющего ШИМ-сигнала, которая может варьироваться в пределах от 1 до 10 кГц, постоянная времени ротора, ограничения по скорости и по току, максимальная величина ускорения и другие.

Затем с помощью блока управления приводят систему управления в действие. В соответствии с управляющей программой, хранимой во FLASH-памяти программ 15 микроконтроллера, выполняемой его микропроцессорным ядром 14, на линию PA1(TMR_CH1) подается ШИМ-сигнал прямоугольной формы с заданной частотой и скважностью, управляющий через силовой выход работой инвертора 2 и реализующий алгоритм векторного управления асинхронным двигателем по принципу косвенной ориентации по полю ротора. Одновременно с этим микроконтроллером реализуется постоянный цикл опроса аналоговых и цифровых датчиков, полученные значения которых сохраняются в SRAM-памяти данных 16. При этом мгновенные значения токов фаз, частоты и направления вращения ротора электродвигателя, а также положение педали акселератора транспортного средства используются для автоматической коррекции управляющего воздействия. В случае срабатывания датчиков включения основного или стояночного тормозов микроконтроллер останавливает работу системы управления.

Система управления электроприводом транспортного средства, содержащая асинхронный электродвигатель, к которому подключен инвертор, преобразующий напряжение постоянного тока в переменный с регулируемой частотой и регулируемым напряжением в режиме широтно-импульсной модуляции, отличающаяся тем, что выполнена в виде микропроцессорной системы, силовой выход которой подключен к инвертору; микропроцессорная система содержит первый, второй и третий аналоговые измерительные входы, а также первый, второй, третий и четвертый цифровые измерительные входы; к первому аналоговому измерительному входу подключен выход амперметра, измеряющего токи фаз на выходе инвертора, ко второму аналоговому измерительному входу подключен выход вольтметра, измеряющего напряжение постоянного тока на силовом выходе, а к третьему аналоговому измерительному входу подключен выход потенциометра акселератора транспортного средства; к первому цифровому измерительному входу подключен первый канал энкодера, установленного на валу электродвигателя, ко второму измерительному входу подключен второй канал энкодера, а к третьему и четвертому цифровым измерительным входам подключены соответственно датчики включения основного и стояночного тормозов; дополнительно к микропроцессорной системе подключен блок управления, выполненный в виде LCD-индикатора и блока ввода данных.



 

Похожие патенты:

Изобретение относится к устройствам для управления тяговой системой транспортных средств с электротягой. Устройство управления для вращающейся электрической машины транспортного средства содержит процессор фильтрации, контроллер, модуль вычисления параметров, модуль переменного задания.

Группа изобретений относится к управлению двигателями переменного тока. Способ динамической интегральной компенсации на основе пропорционально-интегрального (ПИ) регулирования электродвигателя заключается в следующем.

Изобретение относится к области электротехники и может быть использовано в системе распределения и преобразования электроэнергии в качестве регулируемого электрического привода насосов кустов скважин, в том числе погружных электроцентробежных насосов, размещённых на одном кусте и предназначенных для подъёма из пласта на поверхность скважинной жидкости, содержащей нефть, а также для добычи воды из водоносных пластов и для закачки воды в продуктивные нефтяные пласты с целью поддержания пластового давления, также может использоваться в качестве регулируемого электрического привода механизмов буровой установки и для других механизмов.

Изобретение относится к области электротехники и может быть использовано для управления приводом на базе высоковольтных двигателей большой мощности. Техническим результатом является обеспечение высоких значений напряжения и силы тока, упрощение, снижение требований к изоляции, улучшение способности двигателя рассеивать тепло и увеличение удельной мощности.

Изобретение относится к области электротехники и может быть использовано, например, в электроприводах питательных насосов электростанций или других насосных агрегатов с большой разницей давления на входе и выходе насоса.

Изобретение относится к области электротехники и может быть использовано в контроллерах двигателя, в частности в контроллере двигателя для электродвигателя. Техническим результатом является снижение затрат на монтаж.

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемом электроприводе штангового глубинного насоса с асинхронным двигателем, подключенным к силовой сети через преобразователь частоты.

Изобретение относится к насосным узлам. Технический результат – обеспечение насосного узла с дополнительно оптимизированной конструкцией, за счет уменьшения размера приводного мотора, которая является эффективной даже для работы не с полной, а с частичной нагрузкой.

Изобретение относится к области электротехники. Устройство управления для управления электрическим блоком, содержащее: пару переключающих элементов, выполненных с возможностью преобразования мощности от источника питания в мощность переменного тока и подачи мощности переменного тока на электрический блок, блок преобразования, блок вычисления, блок генерирования, блок управления, блок определения, блок коррекции.

Изобретение относится к области электротехники, а именно к способам управления электроприводами переменного тока, и может быть использовано при частотном управлении двухфазным асинхронным двигателем с его питанием от трехфазного преобразователя частоты.

Изобретение относится к области электротехники и может быть использовано для управления реактивной электрической машиной без демпферной клетки. Способ определения частоты (f) ротора и/или угла (ϕ) ротора реактивной электрической машины (2), которая имеет статор со статорной обмоткой (10) и ротор с магнитно анизотропным роторным пакетом, осуществляют посредством приложения временной последовательности импульсов напряжения (Uk) к статорной обмотке (10), определения ответной последовательности импульсов протекающего в статорной обмотке (10) электрического тока (Ik), который возникает вследствие импульсов напряжения (Uk) и последовательно наводимого потока (Φk) вследствие магнитно анизотропного роторного пакета, при этом определение частоты (f) ротора и/или угла (ϕ) ротора осуществляют на основе измеряемой ответной последовательности импульсов электрического тока (Ik) с помощью оценочного блока (3).

Изобретение относится к насосным узлам. Технический результат – обеспечение насосного узла с дополнительно оптимизированной конструкцией, за счет уменьшения размера приводного мотора, которая является эффективной даже для работы не с полной, а с частичной нагрузкой.

Изобретение относится к области электротехники и может быть использовано для управления синхронным электродвигателем с постоянными магнитами, применяемым в качестве линейного привода для электропогружной насосной установки.
Изобретение относится к ручному бытовому электрическому прибору. Технический результат заключается в создании ручного бытового прибора с более точной активизацией электродвигателя.

Изобретение относится к области электротехники и может быть использовано для приведения в действие электродвигателя от коммерческого источника питания. Техническим результатом является повышение точности управления током и обеспечение стабильных рабочих характеристик при переключении питания привода от преобразователя мощности к питанию привода от коммерческого источника питания.

Изобретение относится к области электротехники и может быть использовано в двигателях, питаемых с помощью инвертора. Техническим результатом является уменьшение шумов двигателя.

Изобретение относится к области электротехники и может быть использовано для приведения в действие вращающейся машины переменного тока, присоединенной к механическому устройству.

Изобретение относится к области электротехники и может быть использовано в устройствах управления электрической мощностью в трехфазных двигателях переменного тока.

Изобретение относится к области электротехники и может быть использовано для управления трехфазным трехуровневым инвертором напряжения, система управления которого использует метод прямого управления моментом двигателя.

Изобретение относится к области электротехники и может быть использовано в оборудовании преобразования энергии для управления электродвигателем с использованием информации о положении и скорости электродвигателя, полученной с помощью кодового датчика угла поворота.

Изобретение относится к транспортным средствам. Транспортное средство содержит двигатель внутреннего сгорания; катализатор, находящийся в выпускном канале, окисляющий несгоревшее топливо и выполненный с возможностью накапливания кислорода и электронный модуль управления.
Наверх