Способ измерения расхода жидкости

Изобретение относится к измерительной технике, а именно к измерению расхода жидкостей, и может быть использовано в автоматизированных системах управления технологическими процессами в воздухоразделительных установках. Способ измерения расхода жидкости основан на сравнении результата измерения уровня жидкости в мерном бачке с заданным значением, в соответствии с его отклонением, регулировании площади поперечного сечения выходного сопла и, при выполнении условия h=hзад, где h - уровень жидкости в мерном бачке, hзад - заданное значение уровня жидкости, определении площади поперечного сечения выходного сопла и расчете расхода жидкости. Технический результат - расширение диапазона измерения расхода жидкости. 1 ил.

 

Изобретение относится к измерительной технике, а именно к измерению расхода жидкостей и может быть использовано в автоматизированных системах управления технологическими процессами в воздухоразделительных установках.

Известен способ измерения расхода жидкого кислорода, основанный на зависимости от расхода перепада давления на местном сужении потока в трубопроводе, патент RU 2053484, G01F 1/34, дата публикации 27.01.1996. Местное сужение потока создают путем формирования кольцевого слоя измеряемой жидкости на внутренней поверхности трубопровода путем создания неоднородного магнитного поля охватывающим трубопровод кольцевым магнитом или соленоидом, и в качестве параметра связанного с расходом, используют величину силового воздействия потока на кольцевой слой жидкости, измеряемого по величине осевого усилия, приложенного к кольцевому магниту или соленоиду.

К основным недостаткам данного способа следует отнести невозможность измерения расхода потока безнапорной жидкости.

Наиболее близким по совокупности признаков является способ измерения расхода жидкости, осуществляемый при помощи устройства для измерения расхода жидкости (Д.Л. Глизманенко Получение кислорода. Изд. 5-е. М. «Химия» 1972, с. 639), основанный на пропускании жидкости через мерный бачок с выходным соплом. Высота столба жидкости в мерном бачке пропорциональна ее расходу и измеряется указателем уровня. Давление столба жидкости может передаваться на поплавковый датчик, который соединен со вторичным указывающим и регистрирующим прибором.

К основным недостаткам рассмотренного способа измерения расхода жидкости, осуществляемого при помощи устройства для измерения расхода жидкости следует отнести ограниченный (узкий) диапазон измерения расхода жидкости, определяемый вертикальным размером мерного бачка и площадью поперечного сечения выходного сопла.

Техническим результатом изобретения является расширение диапазона измерения расхода жидкости, за счет изменения площади поперечного сечения выходного сопла и поддержания уровня жидкости в мерном бачке на заданном значении.

Технический результат достигается тем, что в способе измерения расхода жидкости, основанном на пропускании жидкости через мерный бачок с выходным соплом и измерении уровня жидкости в мерном бачке, согласно изобретению, результат измерения уровня жидкости сравнивают с заданным значением, в соответствии с его отклонением регулируют площадь поперечного сечения выходного сопла и, при выполнении условия h=hзад, где h - уровень жидкости в мерном бачке, hзад заданное значение уровня жидкости, определяют площадь поперечного сечения выходного сопла и рассчитывают расход жидкости.

Сущность предложенного способа заключается в том, что результат измерения уровня жидкости в мерном бачке сравнивают с заданным значением, в соответствии с его отклонением регулируют площадь поперечного сечения выходного сопла и, при выполнении условия h=hзад, где h - уровень жидкости в мерном бачке, hзад - заданное значение уровня жидкости, определяют площадь поперечного сечения выходного сопла и рассчитывают расход жидкости.

При пропускании жидкости через мерный бачок уровень жидкости должен стабилизироваться на заданном значении hзад за счет уменьшения или увеличения величины потока жидкости, выходящей из мерного бачка через выходное сопло. Уровень жидкости в мерном бачке определяется датчиком уровня. При этом, в случае уменьшения уровня жидкости в мерном бачке ниже заданного значения h<hзад, уменьшают площадь поперечного сечения выходного сопла и, соответственно, величину потока жидкости, уходящего из мерного бачка через выходное сопло. При увеличении уровня жидкости в мерном бачке выше заданного значения h>hзад, увеличивают площадь поперечного сечения выходного сопла, а соответственно, и величину потока жидкости, уходящего из мерного бачка через выходное сопло. При достижении стабилизированного значения уровня жидкости в мерном бачке h=hзад, что будет соответствовать равенству величины потока жидкости, поступающей в мерный бачок из приемника жидкости, величине потока жидкости, выходящего из мерного бачка через выходное сопло, определяют площадь поперечного сечения выходного сопла и рассчитывают расход жидкости.

Способ может быть реализован, например с помощью устройства, схема которого приведена на фигуре, где обозначено:

1 - мерный бачок;

2 - приемник жидкости;

3 - выходное сопло, снабженное механизмом регулирования площади поперечного сечения;

4 - датчик уровня;

5 - датчик положения механизма регулирования площади поперечного сечения выходного сопла;

6 - блок управления;

7 - регистрирующий прибор;

I-I, II-II-сечения, определяющие положения уровня жидкости при высоте h=hзад и h=0 соответственно.

Механизм регулирования площади поперечного сечения 3, предназначен для регулирования величины потока жидкости, выходящей из мерного бачка через выходное сопло в сечении h=0 при определенном гидростатическом давлении, заданным уровнем жидкости в мерном бачке h=hзад, за счет изменения площади поперечного сечения выходного сопла. Выходное сопло 3, снабженное механизмом регулирования площади поперечного сечения, может быть выполнено, например, в виде клапана регулирующего по ГОСТ 12893-2005, а привод может быть механическим, электрическим, гидравлическим или пневматическим.

Датчик положения механизма регулирования площади поперечного сечения выходного сопла 5 предназначен для формирования сигнала, пропорционального величине площади поперечного сечения выходного сопла 3, подаваемого на второй вход блока управления 6. Датчик положения механизма регулирования площади поперечного сечения выходного сопла 5 может быть механического, резистивного, индуктивного, емкостного или оптического принципа действия.

Блок управления 6 предназначен для получения сигнала от датчиков уровня 4 и положения механизма регулирования площади поперечного сечения выходного сопла 5 и формирования сигнала управления механизмом регулирования площади поперечного сечения выходного сопла 3 пропорционального величине рассогласования сигнала датчика уровня 4 и заданного значения, расчета величины расхода жидкости проходящей через устройство на основании сигнала, поступающего от датчика 5 и кодирования информации о расходе жидкости для передачи ее на регистрирующий прибор 7. Блок управления имеет два входа, соединенных с выходами датчика уровня 4 и датчика положения механизма регулирования площади поперечного сечения 5 и два выхода, соединенных со входом механизма регулирования площади поперечного сечения выходного сопла 3 и входом регистрирующего прибора 7. Блок управления может быть выполнен на основе программируемого микроконтроллера или электронно-вычислительной машины. Для повышения качества работы устройства блок управления 6 может использовать алгоритмы как пропорционального, так и пропорционально-интегрального или пропорционально-интегрально-дифференциального регуляторов.

Устройство работает следующим образом.

Поток жидкости поступает в приемник жидкости 2, из него в мерный бачок 1 и далее выходит из устройства через выходное сопло 3, снабженное механизмом регулирования площади поперечного сечения. Для обеспечения равенства потоков жидкости, поступающего в мерный бачок из приемника жидкости 2 и выходящего из мерного бачка через выходное сопло 3, обеспечивается поддержание заданного уровня жидкости в мерном бачке следующим образом. Уровень жидкости в мерном бачке 1 измеряется при помощи датчика уровня 4, сигнал с выхода которого поступает на первый вход блока управления 6 и сравнивается в блоке управления 6 с предварительно настроенным, заданным значением. Блок управления 6 формирует сигнал управления механизмом регулирования площади поперечного сечения выходного сопла 3 пропорциональный величине рассогласования сигнала датчика уровня 4 и заданного значения. Полярность сигнала управления соответствует знаку величины рассогласования: площадь поперечного сечения сопла 3 увеличивается, при превышении заданного уровня жидкости в мерном бачке 1; площадь поперечного сечения сопла 3 уменьшается, если уровень жидкости в мерном бачке 1 ниже заданного. По мере стабилизации уровня жидкости в мерном бачке h=hзад, где h - уровень жидкости в мерном бачке, hзад - заданное значение уровня жидкости, что указывает на равенство потоков жидкости, поступающего в мерный бачок 1 из приемника 2 и уходящего из мерного бачка 1 через выходное сопло 3, снабженное механизмом регулирования площади поперечного сечения, блок управления 6 определяет площадь проходного сечения выходного сопла 3 на основании сигнала от датчика положения механизма регулирования площади поперечного сечения выходного сопла 5, поступающего на второй вход блока управления 6 и рассчитывает расход жидкости. С блока управления 6 сигнал о величине расхода жидкости поступает на регистрирующий прибор 7 и выводится на экран.

Предложенный способ измерения расхода жидкости позволяет существенно расширить диапазон измерения расхода жидкости. Достигается это за счет того, что расход жидкости определяется не по величине уровня жидкости в мерном бачке пропорциональной расходу через выходное сопло, а по величинам площади поперечного сечения выходного сопла и заданному значению уровня жидкости h=hзад в мерном бачке. После того, как будет обеспечено равенство потоков жидкости, поступающего в мерный бачок из приемника жидкости и выходящего из мерного бачка через выходное сопло.

Предложенный способ измерения расхода позволяет обеспечить измерение расхода жидкости в широком диапазоне, что является очень важным при управлении технологическими процессами в воздухоразделительных установках, для которых характерны значительные пределы изменения расходов потоков жидкости вплоть до их отсутствия (пусковой период), определяемых режимом работы воздухоразделительной установки.

Использование предложенного технического решения позволит расширить диапазон измерения расхода жидкости.

Способ измерения расхода жидкости, основанный на пропускании жидкости через мерный бачок с выходным соплом, измерении уровня жидкости в мерном бачке, отличающийся тем, что результат измерения уровня жидкости в мерном бачке сравнивают с заданным значением, в соответствии с его отклонением регулируют площадь поперечного сечения выходного сопла и при выполнении условия h=hзад, где h - уровень жидкости в мерном бачке, hзад - заданное значение уровня жидкости, определяют площадь поперечного сечения выходного сопла и рассчитывают расход жидкости.



 

Похожие патенты:

Изобретение относится к устройствам для измерения расхода жидких сред, в частности, при диагностировании гидроприводов, гидросистем и гидроагрегатов мобильных и стационарных машин различного назначения.

Изобретение относится к измерительной технике и может быть использовано при создании электронных средств измерения. .

Ротаметр // 2334949
Изобретение относится к области контрольно-измерительной техники, а именно к приборам для измерения расхода, и может быть использовано при контрольных замерах жидкости, протекающей по трубопроводам систем закачки воды в пласт при добыче нефти.

Изобретение относится к измерительной технике, в частности к измерителям расхода и уровня жидкости, и может использоваться в фотоэлектронных расходомерах и уровнемерах поплавкового типа.

Изобретение относится к области расходометрии и может быть использовано для коммерческого и технического контроля текучих сред. .

Изобретение относится к измерительной технике и может быть использовано для измерения объемного расхода газа. .

Ротаметр // 2229689
Изобретение относится к приборам для измерения жидкости или газа. .

Ротаметр // 2209396
Изобретение относится к технике определения расхода газов и жидкостей методом постоянного перепада давления. .

Изобретение относится к области приборостроения, предназначено для измерения расхода жидкости или газа в широком диапазоне расходов и может быть использовано в различных областях народного хозяйства.

Ротаметр // 2199721
Изобретение относится к измерительной технике и может быть использовано для измерения расхода газов и жидкостей. .
Наверх