Способ получения борсодержащего биоактивного стекла



Способ получения борсодержащего биоактивного стекла
A61L2430/12 - Способы и устройства для стерилизации материалов и предметов вообще; дезинфекция, стерилизация или дезодорация воздуха; химические аспекты, относящиеся к бандажам, перевязочным средствам, впитывающим прокладкам, а также к хирургическим приспособлениям; материалы для бандажей, перевязочных средств, впитывающих прокладок или хирургических приспособлений (консервирование тел людей или животных или дезинфекция, характеризуемые применяемыми для этого веществами A01N; консервирование, например стерилизация пищевых продуктов A23; препараты и прочие средства для медицинских, стоматологических или гигиенических целей A61K; получение озона C01B 13/10).

Владельцы патента RU 2690854:

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) (RU)

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата натрия, трибутилфосфата и тетраэтоксисилана в скипидаре, добавление раствора борной кислоты в смеси триоктиламина и октилового спирта, нагревание для удаления растворителей при 150-200°С и проведение пиролиза при температуре 700°С в течение 30 минут. Технический результат заключается в упрощении способа получения биостекла за счет сокращения времени процесса, а также снижении пожароопасности. 1 з.п. ф-лы, 2 пр.

 

Изобретение относится к медицине, а именно к способу получения борсодержащего биостекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия.

Биоактивные стекла относятся к классу керамики, способной взаимодействовать с тканями организма (предпочтительно костными тканями). Они состоят в основном из диоксида кремния, оксида натрия, оксида кальция и оксида фосфора, причем известно что оптимальные биологические свойства проявляются при содержании (в мас. %): 45% SiO2 - 24,5%, Na2O - 24,5%, CaO - 6% P2O5 [Hench L.L. «The story of Bioglass®»// J. Materials Science: Materials in Medicine, 2006, V. 17, Р. 967-978]. Биостекло запускает реакции организма, отвечающие за восстановление костного дефекта. Это происходит за счет медленного растворения компонентов биостекла под воздействием среды организма. С одной стороны, в ходе растворения на поверхности формируется биологически активный слой нанокристаллического гидроксиапатита, что обеспечивает прочное связывание с костными тканями организма. С другой стороны, продукты растворения (ионы кальция и кремния) стимулируют пролиферацию остеогенных клеток для воспроизводства новых тканей. Вследствие низких механических характеристик, таких как прочность на излом и хрупкость, биостекла редко используются сами по себе. Например, для структурных элементов в ортопедии предпочитают использовать металлические сплавы или синтетические полимеры. Покрытие имплантатов слоем биостекла решает проблему биосовместимости чужеродных материалов, так как защищая поверхность сплава от коррозии или деструкции, биостекло препятствует выходу потенциально токсичных веществ в среду организма. Покрытие имплантатов слоем биостекла проводят способами окунания или термическим напылением.

Бор является одним из микроэлементов в организме человека, который играет важную роль в росте костей. Регулируя паратиреоидный гормон, он косвенно воздействует на обмен магния, кальция, фосфора и витамина D. Бор участвует в процессах, происходящих в центральной нервной системе и мозге, поддерживает в норме состояние мышечной ткани, он вовлечен в метаболизм костных тканей и принимает активное участие в ее формировании.

Известен состав и способ получения боратного биоактивного стекла содержащего (мол. %): 6Na2O, 8K2O, 8MgO, 22СаО, 54B2O3, 2P2O5. По этому способу стекло получают смешением необходимых количеств Na2CO3, K2CO3, MgCO3, СаСО3, Н3ВО3, NaH2PO4 и плавлением смеси в платиновом тигле в течение 1 ч при 1100°С. [Zhang X. et al. «Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model» // Biomaterials, 2010, V. 31, p. 5865-5874].

Недостатком способа является необходимость тщательной гомогенизации исходной смеси и высокая температура плавки.

Известен способ получения биоактивного борсодержащего стекла [пат. US №7582310, опубл. 01.09.2009], основанный на плавлении исходных сухих компонентов. Его осуществляют следующим образом. Сначала смешивают карбонат кальция, диоксид кремния, оксид бора, оксид магния, фторид кальция и пирофосфат кальция при соотношении реагентов, необходимом для получения биоактивного стекла. Затем смесь помещают в платиновый тигель и постепенно нагревают до 1400°С в электрической печи и выдерживают при этой температуре в течение 2 часов до полного расплавления. Расплав извлекают из тигля, выливают на стальную пластину или используют водяную баню для быстрого охлаждения.

К недостаткам способа можно отнести то, что он не гарантирует получения гомогенного материала из-за возможности фазового разделения компонентов биостекла и высокую температуру плавки.

Известен способ получения борсодержащего биостекла [з. US №20170340666, опубл. 30.11.2017] из расплава. Для этого предварительно тщательно размешенную композицию из смеси борной кислоты, алюминия, карбоната натрия, карбоната калия, известняка, оксида магния, фосфата кальция и сульфата натрия отжигают в течение 24 часов при 250°С. Затем сухую композицию плавят при 1200°С в течение 6 часов и полученный расплав резко охлаждают, выливая его на стальную пластину. На завершающем этапе проводят нагрев материала до 500°С.

Предложенный метод имеет такие недостатки как длительность получения, наличие нескольких этапов и энергозатратность.

Известен способ получения борсодержащих биоактивных стекол золь-гель-методом. [Furlan R.G. et al. «Preparation and characterization of boron-based bioglass by sol-gel process» // Journal of Sol-Gel Science and Technology, 2018, V. 88, p. 181-191]. Для этого NaCl растворяют в 5 мл воды и вводят в раствор тетраэтоксисилана в этаноле (16,8 мл : 16,5 мл). Затем добавляют 0,6 М раствор HCl (900 мл) и перемешивают в течение 15 мин с помощью магнитной мешалки при комнатной температуре. После этого добавляют растворы CaCl2⋅2H2O, Na3PO4⋅12H2O (1,6 г), борной кислоты (0,2 г) и NH4OH (3 мл) для увеличения рН суспензии до 5 (±0,5). В результате получают гель, который оставляют на 1 неделю для созревания и затем высушивают при комнатной температуре. Термическую обработку проводят при 700°С в течение 3 часов. Использование этилового спирта способствует растворению бора, что позволяет получить однородные биостекла.

Недостатком предложенного способа является длительность и многоэтапность процесса получения биостекла.

Известен способ (прототип) получения борсодержащих биоактивных стекол путем включения бора (5 и 10 мол. %) при замещении части кремния. [Wu Ch. et al. «Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds» // Biomaterials, 2011, V. 32, р. 7068-7078]. Для приготовления биоактивного стекла, содержащего 10% бора, 17,5 г тетраэтилортосиликата, 4,2 г Са(NO3)2⋅4H2O, 2,83 г трибутилбората, 2,19 г триэтилфосфата и 3 г 0,5 М HCl растворяют в 180 г этанола и перемешивают при комнатной температуре в течение 1 дня. Затем удаляют избыток раствора, а оставшуюся часть оставляют испаряться при комнатной температуре в течение 24 часов. На заключительном этапе сухой остаток прокаливают при 700°С в течение 5 часов. Биостекла с 5% бора, получают при изменении содержания бора в исходной смеси.

К недостаткам способа относится длительность и энергозатратность процесса, а также то, что в составе биостекла отсутствует такой важный компонент как натрий, который участвует в метаболизме костной ткани. Кроме того, использование в составе исходной смеси нитрат-ионов и большого объема этанола делает эту смесь пожаровзрывоопасной.

Технический результат предлагаемого изобретения заключается в упрощении способа получения биостекла за счет значительного сокращения времени процесса, а также снижении пожароопасности, так как в составе прекурсора отсутствуют окислители, в частности нитраты.

Технический результат достигается способом получения биоактивного борсодержащего стекла, включающим смешение компонентов стекла в органическом растворителе с последующим пиролизом. Для этого используют раствор, содержащий тетраэтоксисилан, трибутилфосфат, олеат натрия и олеат кальция в скипидаре, а также раствор борной кислоты в смеси три-н-октиламина (ТОА) с октановым спиртом (ОС), отношение ТОА:ОС=1:1. После смешения компонентов биостекла выполняют отгонку растворителя при температуре 150-200°С. Затем проводят обжиг (пиролиз) полученного состава в муфельной печи до температуры 700°С.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1. В 15 мл скипидара при нагревании до 70-80°С растворяют 3,4 г олеата кальция и добавляют 0,3 мл трибутилфосфата. Отдельно в 15 мл скипидара при нагревании растворяют 3,1 г олеата натрия и добавляют 1,9 мл тетраэтоксисилана. Отдельно в смеси 2 мл три-н-октиламина и 2 мл октилового спирта растворяют 0,1 г борной кислоты. Растворы смешивают в порядке получения и нагревают при температуре 150°С для удаления избытка органики. Затем пастообразную массу подвергают пиролизу, нагревая до 700°С и выдерживают при этой температуре в течение 30 минут. В результате получают биостекло с содержанием компонентов, мас. %:

Пример 2. В 15 мл скипидара при нагревании до 100-110°С растворяют 3,4 г олеата кальция и добавляют 0,3 мл трибутилфосфата. Отдельно в 15 мл скипидара при нагревании растворяют 3,1 г олеата натрия и добавляют 1,4 мл тетраэтоксисилана. Отдельно в смеси 5 мл три-н-октиламина и 5 мл октилового спирта растворяют 0,36 г борной кислоты. Растворы смешивают в порядке получения и нагревают при температуре 200°С для удаления избытка органики. Затем массу подвергают пиролизу, нагревая до 700°С и выдерживают при этой температуре в течение 30 минут. В результате получают биостекло с содержанием компонентов, мас. %:

1. Способ получения борсодержащего биоактивного стекла, включающий смешение компонентов стекла в органическом растворителе с последующим пиролизом, отличающийся тем, что раствор готовят из олеата кальция, олеата натрия, трибутилфосфата и тетраэтоксисилана в скипидаре, к полученному раствору добавляют раствор борной кислоты в смеси триоктиламина и октилового спирта, нагревают для удаления растворителя при 150-200°С, и ведут пиролиз при температуре 700°С в течение 30 минут.

2. Способ по п. 1, отличающийся тем, что олеат кальция, олеат натрия, трибутилфосфат и тетраэтоксисилан растворяют в скипидаре при нагревании в диапазоне температур 70-110°С.



 

Похожие патенты:

Изобретение относится к области локализации жидких радиоактивных отходов, в частности к составам для отверждения жидких радиоактивных растворов и пульп путем их остекловывания.

Настоящее изобретение относится к композиции стекловолокна, стекловолокну и композиционному материалу, содержащему указанное стекловолокно. Указанная композиция стекловолокна содержит следующие компоненты, выраженные в мас.%: 58-64 SiO2, 14-19 Al2O3, больше или равно 10 и меньше 11,8 СаО, 7,5-11 MgO, 0,2-2,7 SrO, 0,1-2 Na2O+K2O, 0,05-0,9 Li2O, 0,05-1 Fe2O3, 0,05-1,1 TiO2 и меньше 0,5 F2, при этом соотношение компонентов (в мас.%) C1=(MgO+SrO)/CaO) находится в диапазоне 0,75-1,1 и соотношение С2=CaO/MgO составляет менее 1,4.
Изобретение относится к способу получения заготовки из литийсиликатного стекла, которая может быть использована в качестве зубоврачебного материала. Для получения заготовки состава, включающего (вес.%) 46-72 SiO2, 10-25 Li2O и по меньшей мере 8 вес.%, предпочтительно от 9 до 20 вес.% стабилизатора из группы ZrО2, HfО2 или их смесей, сырьевые материалы в виде порошка с размером зерен d50=0,3-1,5 мкм плавят при температуре TAU =1450-1600°С в резервуаре.
Группа изобретений относится к литиево-силикатной стеклокерамике, способам ее изготовления и применения. Предлагается способ изготовления литиево-силикатной стеклокерамики, включающей в себя оксид пятивалентного металла, выбранный из Nb2O5, Ta2O5 и смесей таковых, и от 11,0 до 21,0 масс.% Li2O, и включающей в себя от 0 до менее 2,0 масс.% К2О, в котором (а) исходное стекло, включающее компоненты стеклокерамики, подвергают термической обработке при температуре в 480-500°C в течение периода времени в 10 мин - 120 мин для формирования стекла с зародышами, которые являются пригодными для формирования кристаллов дисиликата лития, и (b) стекло с зародышами подвергают термической обработке при температуре в 650-750°C в течение периода времени в 10 мин - 120 мин для формирования стеклокерамики с дисиликатом лития в качестве основной кристаллической фазы.

Группа изобретений относится к способам получения зубного протеза на основе литийсиликатного стекла или литиевой стеклокерамики. Способы включают стадию расплавления порошковой смеси следующего состава (вес.%): SiO2 50-70, Li2O 5-25, Al2O3 0,1-20, K2O 0,1-15, CeO2 0,1-15, B2O3 0-5, P2O5 0-15, Tb2O3 0-2, ZrO2 0-15, ZnO 0-4, включающего также 0,1-5% по меньшей мере одной добавки из группы BaO, CaO, MgO, MnO, Er2O3, Gd2O3, Na2O, Pr2O3, Pr6O11, Sm2O3, TiO2, V2O5, Y2O3.

Изобретение относится к оптически прозрачным стеклокристаллическим материалам магнийалюмосиликатной системы. Предлагается прозрачный ситалл, содержащий, мас.%: SiO2 40-50; Al2O3 10-15; MgO 6-10; ZnO 20-25; Na2O 0,5-3; TiO2 3-9; ZrO2 1-6; As2O3 0,1-1.

Стекло // 2640220
Изобретение относится к технологии силикатов и касается составов стекол, которые могут быть использованы для изготовления сортовой посуды, изделий декоративно-художественного назначения.

Изобретение относится к стеклам для твердотельных лазеров. А именно, изобретение раскрывает фосфатное лазерное стекло, допированное Nd, или Yb, или Er и имеющее указанный химический состав, способ снижения длины волны пика излучения указанного выше фосфатного лазерного стекла, включающего лантан и допированного Nd, или Yb, или Er, в котором до 100% La2O3 заменяют на CeO2, чтобы изменить длину волны пика излучения, а также изобретение раскрывает лазерную систему с использованием смешанного стекла, в которой одно стекло из системы смешанного стекла является указанным фосфатным лазерным стеклом, и способ генерации импульса лазерного луча с использованием такой лазерной системы.

Группа изобретений относится к области производства литиево-силикатной стеклокерамики, способам получения и применения такой стеклокерамики. Способ изготовления литиево-силикатной стеклокерамики, включающей: оксид четырехвалентного металла, выбранный из ZrO2, TiO2, СеО2, GeO2, SnO2 и смесей таковых, по меньшей мере, 12,1 массовых % Li2O, от 0 до менее 0,1 массового % La2O3, от 0 до менее 1,0 массового % K2О и от 0 до менее 2,0 массовых % Na2O, содержит этапы, на которых: (a) исходное стекло, включающее компоненты стеклокерамики, подвергают термической обработке при температуре в 480-520°С в течение 10-30 мин для формирования стекла с зародышами, которые являются пригодными для формирования кристаллов дисиликата лития, и (b) стекло с зародышами подвергают термической обработке при температуре в 640-740°С для формирования стеклокерамики с дисиликатом лития в качестве основной кристаллической фазы, причем продолжительность второй термической обработки на стадии (b) составляет 10-60 мин.

Стекло // 2631716
Изобретение относится к технологии силикатов и касается составов стекол, которые могут быть использованы для изготовления труб для прокладки кабеля и других изделий.

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра.

Изобретение относится к оптическим материалам для мощных высокоэнергетических импульсных усилительных установок. Такими материалами являются фосфатные стекла особых составов, из которых изготавливаются поглощающие оболочки (ПО) для приклеивания к боковым граням крупногабаритных дисковых активных элементов (ДАЭ), выполненных из концентрированных неодимовых фосфатных стекол.
Изобретение относится к области оптического материаловедения. .
Изобретение относится к области производства стекол для квантовой электроники, оптической электроники, светотехники. .

Стекло // 1645245
Изобретение относится к составам теплопоглощакчщих стекол, которые могут быть иопользоезны для медико-биологических и строительных целей. .

Изобретение относится к составам цветных оптических стекол, которы е могут быть использованы для изготовления светофильтров, поглощающих область спектра 580-1500 нм крутой границей поглощения, обеспечивающей величину оптической плотности порядка 3-5 на длине волны 700 нм.

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см2 и частоте 35 кГц при Т = 40ºС в течение 0,5–1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1–5 часов.
Наверх