Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего катализатора при повышенных температуре и давлении, включающий стадию обработки водородсодержащим газом, при этом в качестве цеолитсодержащего катализатора используют никель-молибденовый катализатор процесса изодепарафинизации дизельного топлива, который предварительно подвергают обработке легкой углеводородной фракцией в среде циркуляционного водородсодержащего газа, с последующей двухстадийной обработкой водородсодержащим газом, при этом в качестве водородсодержащего газа используют смесь водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об. Технический результат заключается в том, что способ позволяет практически полностью восстанавливать начальную активность цеолитсодержащего никель-молибденового катализатора, а также увеличить срок эксплуатации катализатора до проведения окислительной регенерации. 2 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа.

Известен способ неокислительной водородной реактивации цеолитного катализатора депарафинизации.

(Патент US 4683052, 28.07.1987).

Способ заключается в обработке катализатора водородсодержащим газом при температуре от 315 до 482°C, давлении от 0,7 до 7,0 МПа. Способ позволяет полностью восстанавливать активность катализаторов на базе цеолитов ZSM-5, ZSM-11, ZSM-12 др.

К недостаткам способа следует отнести то, что он пригоден исключительно для платиновых и палладиевых катализаторов, что сужает сферу его применения.

Также известен способ регенерации отработанного катализатора гидроконверсии.

(Патент US 3590007, 29.06.1971).

Способ заключается в бескислородной регенерации катализаторов гидроконверсии, содержащих металлы VI и VIII групп. Способ представляет обработку катализатора водородсодержащим газом, включающим от 1 до 50% об. сероводорода при температуре 600-1000°F (316-538°C) с последующей продувкой чистым водородом для удаления избытка серы на катализаторе. Соотношение газ/сырье составляет около 1000 об./об. Способ особенно эффективен при обработке молибденовых катализаторов процесса гидрокрекинга.

Недостатком способа является удаление только избытка серы на катализаторе, а коксовые отложения затрагиваются в существенно меньшей степени, что не позволяет полностью восстановить его активность. Способ предлагается только для катализаторов процесса гидрокрекинга.

Известен способ активации молибден-цеолитсодержащего катализатора ароматизации метана.

(Патент RU 2525117, 10.08.2014).

Способ активации заключается в том, что на первом этапе катализатор нагревают в потоке водорода до температуры 675-725°C и выдерживают при этой температуре в течение 1-4 часов, на втором этапе его охлаждают до температуры не выше 50°C и выдерживают при данной температуре в среде инертного газа в течение 0,5-3 ч, а на третьем этапе катализатор повторно нагревают в потоке водорода до температуры первого этапа и выдерживают при указанной температуре в течение 0,5-2 часов.

К недостаткам относится нагрев катализатора в процессе активации до температуры 675-725°C в среде чистого водорода, что может привести к спеканию активных металлов и уменьшению удельной поверхности катализатора, а также то, что способ восстановления активности цеолитсодержащего катализатора относится только для процесса ароматизации метана.

Наиболее близким к предлагаемому является способ регенерации (реактивации) закоксованных катализаторов путем обработки водородсодержащим газом.

(Патент US 6632765, 14.10.2003).

Контактирование катализатора с водородсодержащим газом осуществляют при температуре 200-1000°C, давлении 0-35 МПа.

Источником водорода для удаления коксового осадка может быть газообразный водород, синтез-газ (смесь водорода и монооксида углерода) или водород, образующийся при каталитическом дегидрировании потока С25 алканов.

Недостатком способа является использование высоких температур (до 1000°C) и отсутствие сероводорода в водородсодержащем газе при регенерации (реактивации), что может приводить к спеканию активных компонентов металлов и потере активности катализатора.

Задачей предлагаемого изобретения является разработка способа восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива при повышенных температурах в присутствии сероводорода в водородсодержащем газе, что позволяет сохранить гидрирующие металлы в сульфидной форме и предотвратить термическую дезактивацию (спекание) металлов, а также увеличить срок эксплуатации катализатора до проведения окислительной регенерации.

Поставленная задача решается способом восстановления активности цеолитсодержащего катализатора при повышенных температуре и давлении, включающим стадию обработки водородсодержащим газом.

Способ отличается тем, что в качестве цеолитсодержащего катализатора используют никель-молибденовый катализатор процесса изодепарафинизации дизельного топлива, который предварительно подвергают обработке легкой углеводородной фракцией в среде циркуляционного водородсодержащего газа, с последующей двухстадийной обработкой водородсодержащим газом, при этом в качестве водородсодержащего газа используют смесь водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об.

Обработку легкой углеводородной фракцией осуществляют в среде циркуляционного водородсодержащего газа при температуре 360-380°C, давлении 4,0-4,5 МПа, с объемной скоростью подачи углеводородной фракции 3,5-4,5 час-1, соотношении водородсодержащий газ / углеводородная фракция 800-1000 н об./об.

Двухстадийную обработку водородсодержащим газом осуществляют при следующих параметрах: первую стадию осуществляют при давлении 4,0-7,0 МПа, температуре 380-420°C, соотношение водородсодержащий газ/катализатор 800-1000 н об./об.; вторую стадию осуществляют при давлении 2,0-3,0 МПа, температуре 400-450°C, соотношение водородсодержащий газ/катализатор 800-1000 н об./об.

Использование смеси водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об. позволяет сохранить гидрирующие металлы в сульфидной форме и предотвратить их агломерацию, а также исключить уменьшение активной поверхности и снижение эффективности эксплуатации катализатора.

Реактивированный катализатор может быть использован в процессе изодепарафинизации дизельных дистиллятов, а также может подвергнуться пассивации в токе инертного газа и выгрузке из реактора для дальнейшего повторного использования.

Предлагаемый способ позволяет практически полностью восстанавливать начальную активность цеолитсодержащего никель-молибденового катализатора, а также увеличить продолжительность эксплуатации катализатора до проведения окислительной регенерации с использованием кислородсодержащего газа.

Достаточно мягкие условия процесса реактивации позволяют проводить его в реакторах для процессов гидроочистки, предусмотренных для эксплуатации при температуре не выше 450°C.

Преимуществом данного способа восстановления активности цеолитсодержащего никель-молибденового катализатора является отсутствие спекания катализатора, что благоприятно сказывается на длительном сохранении эксплуатационных характеристик высококремнеземного цеолита, и, следовательно, изодепарафинизирующей активности с получением зимних сортов низкозастывающих дизельных топлив с предельной температурой фильтруемости от минус 32 до минус 52°C.

Предлагаемое техническое решение подтверждено следующими примерами.

Пример 1

Цеолитсодержащий никель-молибденовый катализатор был приготовлен соэкструзией по патенту RU №2662934, 31.07.2018. Катализатор содержит смесь высококремнеземных цеолитов, гидрирующие металлы - никель и молибден, промотор триоксид бора и связующее на основе гидрооксида алюминия. Катализатор в сульфидной форме используют в процессе изодепарафинизации дизельных фракций с получением зимних сортов дизельных топлив с предельной температурой фильтруемости от минус 32 до минус 52°C.

Катализатор после 6 месяцев эксплуатации подвергают восстановлению активности способом, предлагаемым настоящим изобретением.

Изодепарафинирующая активность восстановленного катализатора показана с использованием двух видов сырья (таблица 1) в условиях примеров 2 и 3.

Пример 2

Отработанный катализатор по примеру 1 обрабатывают керосиновой фракцией (содержание азота - менее 1,0 ppm) в среде циркуляционного водородсодержащего газа с установки гидроочистки. Условия обработки: температура 360°C, давление 4,0 МПа, объемная скорость подачи керосиновой фракции 3,5 час-1, при соотношении водородсодержащего газа к керосиновой фракции 800 н об./об. Время обработки 8 часов.

Далее производят двухстадийную обработку водородсодержащим газом при следующих параметрах: первая стадия - давление 4,0 МПа, температура 380°C, соотношение водородсодержащий газ/катализатор 800 н об./об.; вторая стадия - давление 2,0 МПа, температура 400°C, соотношение водородсодержащий газ/катализатор 800 н об./об. При этом в качестве водородсодержащего газа используют смесь водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об.

Указанная обработка восстанавливает изодепарафинизирующую активность цеолитсодержащего никель-молибденого катализатора в сравнении со свежим образцом катализатора с получением компонента дизельного топлива с требуемыми низкотемпературными характеристиками. Результаты представлены в таблице 1 (с использованием двух видов сырья).

Пример 3

Отработанный катализатор по примеру 1 обрабатывают облегченной дизельной фракцией (к.к. менее 340°C) с содержанием серы и азота менее 10 ppm и менее 1,0 ppm, соответственно, в среде циркуляционного водородсодержащего газа с установки гидроочистки. Условия обработки: температура 380°C, давление 4,5 МПа, объемная скорость подачи дизельной фракции 4,5 час-1, соотношение водородсодержащего газа к дизельной фракции 1000 н об. /об. Время обработки 6 часов.

Далее производят двухстадийную обработку водородсодержащим газом при следующих параметрах: первая стадия - давление 7,0 МПа, температура 420°C, соотношение водородсодержащий газ/катализатор 1000 н об./об.; вторая стадия - давление 3,0 МПа, температура 450°C, соотношение водородсодержащий газ/катализатор 1000 н об./об. При этом в качестве водородсодержащего газа используют смесь водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об.

Указанная обработка восстанавливает изодепарафинизирующую активность цеолитсодержащего никель-молибденого катализатора в сравнении со свежим образцом катализатора с получением компонента дизельного топлива с требуемыми низкотемпературными характеристиками. Результаты представлены в таблице 1 (с использованием двух видов сырья).

1. Способ восстановления активности цеолитсодержащего катализатора при повышенных температуре и давлении, включающий стадию обработки водородсодержащим газом, отличающийся тем, что в качестве цеолитсодержащего катализатора используют никель-молибденовый катализатор процесса изодепарафинизации дизельного топлива, который предварительно подвергают обработке легкой углеводородной фракцией в среде циркуляционного водородсодержащего газа, с последующей двухстадийной обработкой водородсодержащим газом, при этом в качестве водородсодержащего газа используют смесь водородсодержащего газа и сероводорода при содержании сероводорода 0,2-0,4% об.

2. Способ по п. 1, отличающийся тем, что обработку легкой углеводородной фракцией осуществляют в среде циркуляционного водородсодержащего газа при температуре 360-380°C, давлении 4,0-4,5 МПа, с объемной скоростью подачи углеводородной фракции 3,5-4,5 час-1, соотношении водородсодержащий газ/углеводородная фракция 800-1000 об./об.

3. Способ по п. 1, отличающийся тем, что двухстадийную обработку водородсодержащим газом осуществляют при следующих параметрах: первую стадию осуществляют при давлении 4,0-7,0 МПа, температуре 380-420°C, соотношение водородсодержащий газ/катализатор 800-1000 об./об.; вторую стадию осуществляют при давлении 2,0-3,0 МПа, температуре 400-450°C, соотношение водородсодержащий газ/катализатор 800-1000 об./об.



 

Похожие патенты:

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша в компактном варианте. Компактный реактор включает корпус, размещенные в корпусе реакционные каналы прямоугольной формы, заполненные кобальтовым катализатором, патрубки для ввода синтез-газа в количестве, определяемом отношением числа каналов к числу патрубков ввода синтез-газа, патрубок для ввода и для вывода теплоносителя, на котором расположен регулятор давления, и узел вывода синтетических углеводородов.

Изобретение относится к способу регенерации отработанного катализатора дегидрирования из реактора, включающему: подачу отработанного катализатора дегидрирования, содержащего серу на катализаторе, в аппарат отбора серы; подачу газообразного потока водорода в аппарат отбора при повышенной температуре с получением очищенного потока отработанного катализатора; подачу указанного очищенного потока отработанного катализатора в регенератор с получением регенерированного потока катализатора; и возвращение регенерированного катализатора в секцию реактора через зону восстановления, где указанная зона восстановления удаляет соединения галогена из регенерированного катализатора с получением потока, выходящего из зоны восстановления.

Изобретение относится к способу регенерации закоксованного содержащего металл катализатора. Способ включает взаимодействие закоксованного содержащего металл катализатора в зоне регенерации с атмосферой, которая содержит диоксид углерода и монооксид углерода, где отношение парциального давления монооксида углерода к парциальному давлению диоксида углерода в зоне регенерации составляет от 2,3:1 до 100:1, и которая содержит менее 100 част./млн молекулярного кислорода, при температуре, равной от 600°С до 900°С, в течение времени, равного от примерно 0,1 до примерно 60 мин, причем способ дополнительно включает взаимодействие закоксованного содержащего металл катализатора в зоне регенерации с атмосферой, которая содержит водород, при температуре, равной не ниже 400°С, одновременно с указанным взаимодействием с указанной атмосферой, содержащей диоксид углерода и монооксид углерода, или после него.

Изобретение относится к вариантам способа регенерирования одной или более частиц кобальтсодержащего катализатора Фишера-Тропша in situ в трубе реактора или ех situ вне трубы реактора, включающего следующие стадии: (i) окисление частицы (частиц) катализатора при температуре от 20 до 400°С, (ii) обработку частиц катализатора более 5 мин, (iii) высушивание и, необязательно, нагревание частицы (частиц) катализатора; и (iv) необязательно, восстановление частицы (частиц) катализатора водородом или водородсодержащим газом, причем стадия (ii) обработки включает (а)заполнение пор частицы (частиц) катализатора жидкостью с уровнем рН 10-14, содержащей аммиак и воду, при температуре 0-50°С, (б) пропускание диоксида углерода, (с) оставление в порах жидкости, обработанной диоксидом углерода на период времени более 5 мин при температуре 5-90°С.
Изобретение относится к способу регенерирования одной или более частицы (частиц) дезактивированного кобальтсодержащего катализатора Фишера-Тропша in situ в трубе реактора, где указанная(ые) частица (частицы) катализатора дезактивируется(ются) посредством использования в процессе Фишера-Тропша, при этом упомянутый способ регенерирования содержит следующие стадии: (i) частицу (частицы) катализатора окисляют при температуре от 20 до 400°C, предпочтительно от 100 до 400°C, более предпочтительно от 200 до 400°C; (ii) частицу (частицы) катализатора обрабатывают растворителем, который содержит карбонат аммония и метиламин, этиламин, пропиламин и/или бутиламин, в течение времени более 5 минут; (iii) частицу (частицы) катализатора сушат и, необязательно, нагревают; и (iv) восстанавливают частицу (частицы) катализатора водородом или водородсодержащим газом.
Изобретение относится к способу регенерации отработанного никельсодержащего катализатора гидрирования непредельных углеводородов, состоящего из никеля Ренея и оксида алюминия.

Изобретение относится к области катализа. Описан способ активации платиноморденитных катализаторов гидроизомеризации бензолсодержащих фракций и который осуществляют при повышенных температуре и давлении, последовательной обработкой его в токе сухого воздуха и восстановления водородом, при этом восстановление проводят в две стадии.

Изобретение относится к области катализа. Описан способ регенерирования одной или более частиц кобальтсодержащего катализатора Фишера-Тропша in situ в реакторной трубе, включающий стадии: (i) окисление частицы (частиц) катализатора при температуре от 20 до 400°C; (ii) обработку частицы (частиц) катализатора в течение более 5 мин растворителем; (iii) сушку частицы (частиц) катализатора; и (iv) необязательно восстановление катализатора водородом или каким-либо водородсодержащим газом.

Изобретение относится к регенерации катализаторов. Описан способ регенерации отработавшего порошкообразного, парафинсодержащего катализатора синтеза Фишера-Тропша на основе кобальта, при этом способ включает в себя следующие последовательные обработки: (i) депарафинизационную обработку, (ii) окислительную обработку с регулированием рабочей температуры путем отвода тепла из слоя частиц катализатора с использованием охлаждающего устройства, содержащего средство обеспечения прохождения охлаждающей среды и охлаждающую среду, проходящую через это средство обеспечения прохождения, обеспечивающее тем самым теплопроводящие поверхности, расположенные в и/или вокруг слоя катализатора, с получением окисленных частиц катализатора, и (iii) восстановительную обработку.

Изобретение относится к способу получения ароматических углеводородов из метана, в частности природного газа. .

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к способу переработки промышленной бутан-бутиленовой фракции и получению катализатора для осуществления этого способа.

Изобретение относится к новым кристаллическим германосиликатным композициям и способам их получения. Кристаллические германосиликатные композиции, пригодные в катализе и для разделения газов, представляют собой композиции, содержащие трехмерный каркас, имеющий поры, определяемые 10- и 14-членными кольцами.

Описаны каталитические композиции крекинга с флюидизированным катализатором (ФКК), способы крекинга. Каталитическая композиция включает первый тип частиц, включающих один или несколько компонентов с оксидом бора, и компонент первой матрицы, где первый тип частиц не включает цеолит, и второй тип частиц, который имеет композицию, отличающуюся от первого типа частиц, второй тип частиц включает компонент второй матрицы, компонент фосфора и 20% - 95 мас.

Изобретение относится к способу производства катализатора для крекинга с флюидизированным катализатором (ФКК). Способ включает следующие стадии: предварительное формирование предшествующей микросферы, включающей нецеолитный материал, содержащий бемит и переходный оксид алюминия; кристаллизацию in situ цеолита Y на предварительно сформированной микросфере, чтобы обеспечить микросферу, содержащую цеолит; добавление первой части компонента фосфора к микросфере, содержащей цеолит с образованием микросферы, модифицированной первым фосфором; добавление редкоземельного компонента к микросфере, модифицированной первым фосфором, чтобы обеспечить микросферу, содержащую редкоземельный элемент; и добавление второй части компонента фосфора к предшествующей микросфере, содержащей редкоземельный элемент, чтобы обеспечить каталитическую микросферу.

Настоящее изобретение относится к новым катализаторам каталитического крекинга с псевдоожиженным слоем катализатора, содержащим микросферы, и к способу каталитического крекинга с псевдоожиженным слоем катализатора.

Изобретение относится к непрерывному способу получения пропиленоксида. Предложенный способ включает: (i) предоставление жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, необязательно пропан и, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора; (ii) подачу жидкого потока поступающего материала, предоставленного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит структурного типа MWW, содержащий цинк, и воздействие на жидкий поток поступающего материала условий реакции эпоксидирования в реакторе эпоксидирования с получением реакционной смеси, содержащей пропиленоксид, ацетонитрил, воду, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора, необязательно пропен и необязательно пропан; (iii) удаление отходящего потока из реактора эпоксидирования, причем отходящий поток содержит пропиленоксид, ацетонитрил, воду, по меньшей мере, часть, по меньшей мере, одной растворенной калиевой соли оксикислоты фосфора, необязательно пропен и необязательно пропан.

Изобретение относится к композиции катализатора для обработки выхлопных газов, содержащей алюмосиликатное молекулярное сито, имеющее структуру AEI и молярное отношение кремнезема к глинозему от 20 до 30, и от 1 до 5 мас.% промотирующего металла, в расчете на общую массу материала молекулярного сита.

Изобретение описывает каталитическую композицию для очистки выхлопного газа из двигателя внутреннего сгорания, которая содержит покрытие из пористого оксида, содержащее цеолит, частицы подложки из оксида тугоплавкого металла и металл платиновой группы на подложке из частиц оксида тугоплавкого металла, при этом более 90% частиц оксида тугоплавкого металла, поддерживающих PGM, имеют размер частиц более 1 мкм и d50 менее 40 микрон.
Изобретение относится к способу получения состава ловушки NOx, содержащему: (a) нагрев железосодержащего цеолита в присутствии инертного газа, содержащего менее 1 об.% кислорода, и органического соединения для получения прокаленного в восстановительной атмосфере железа/цеолита; (b) добавление соединения палладия в прокаленный в восстановительной атмосфере железо/цеолит с образованием Pd-Fe/цеолита; и (c) прокаливание Pd-Fe/цеолита при 400-600°C в присутствии кислородсодержащего газа для получения состава ловушки NOx; где органическое соединение представляет собой органический полимер и/или биополимер.

Изобретение описывает способ регенерации катализатора, содержащего титансодержащий цеолит в качестве каталитически активного материала, причем указанный катализатор использовался в способе получения оксида олефина, который включает: (i) обеспечение смеси, содержащей органический растворитель, олефин, эпоксидирующий агент и, по меньшей мере, частично растворенную калийсодержащую соль; (ii) воздействие на смесь, обеспеченную на стадии (i), в реакторе посредством условий эпоксидирования в присутствии катализатора с получением смеси, содержащей органический растворитель и оксид олефина, и с получением катализатора, содержащего осажденную на нем калиевую соль; причем указанный способ регенерации включает: (a) отделение смеси, полученной на стадии (ii), от катализатора; (b) промывку катализатора, полученного на стадии (а), с помощью жидкой водной системы, которая содержит менее чем 0,1 вес.

Описан катализатор для получения α,β-ненасыщенной карбоновой кислоты путем газофазного окисления α,β-ненасыщенного альдегида, причем катализатор включает формованное изделие-носитель с нанесенной на него активной массой, отличающейся тем, что степень покрытия активной массой q, где, составляет самое большее 0,26 мг/мм2, причем Q - это доля активной массы катализатора в мас.%, a Sm - удельная геометрическая поверхность формованного изделия-носителя в мм2/мг, а активная масса включает мультиэлементный оксид общей формулы (II) где X4 означает один или несколько щелочных и/или щелочно-земельных металлов, X5 означает один или несколько элементов из группы Si, Al, Ti и Zr, а означает число в пределах от 2 до 4, b означает число в пределах от 0 до 3, с означает число в пределах от 0,5 до 3, е означает число в пределах от 0 до 2, f означает число в пределах от 0 до 40 и n означает стехиометрический коэффициент элемента кислорода, который определяется стехиометрическими коэффициентами отличных от кислорода элементов, а также их валентностью в (II).
Наверх