Катализатор гидроочистки бензина каталитического крекинга

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением продукта - компонента товарного бензина - с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор, включающий в свой состав кобальт, молибден и носитель, содержащий, мас. %: [Со(Н2О)26Н5О7)]2[Мо4О116Н5О7)2] - 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат - 30-50; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3. Технический результат - повышенная гидрообессеривающая активность катализатора в гидроочистке бензинов каталитического крекинга, а также повышенная селективность катализатора, выражающаяся в снижении степени гидрирования олефиновых углеводородов и уменьшении величины падения октанового числа бензина каталитического крекинга при проведении гидроочистки. 1 з.п. ф-лы, 1 табл., 4 пр.

 

Изобретение относится к области катализа, а именно к катализаторам селективной гидроочистки бензинов каталитического крекинга (БКК) и может быть использовано в нефтеперерабатывающей промышленности.

В настоящее время Россия производит автомобильные бензины, соответствующие экологическому классу 5 в соответствии с техническим регламентом Таможенного союза "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту" (18.10.2011) и содержащие не более 10 ррm серы. БКК является одним из основных компонентов товарных бензинов. Доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снизить содержание серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

БКК характеризуется высоким содержанием олефиновых углеводородов и обладает относительно высоким октановым числом. Гидрирование олефиновых углеводородов, содержащихся в БКК при проведении гидроочистки приводит к снижению октанового числа. Таким образом, желательно проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов. В связи с этим актуальной задачей является создание новых катализаторов, позволяющих проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Известны различные варианты катализаторов для селективной гидроочистки БКК. Как правило, такие катализаторы содержат оксиды кобальта и молибдена, нанесенные на пористый носитель, при этом наиболее часто используются носители на основе оксида алюминия. Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить носители, содержащие совместно оксид алюминия и модифицирующие компоненты, такие как оксиды магния, железа, хрома, кобальта, никеля, меди, цинка, иттрия, скандия и других элементов, а также цеолиты.

Известен катализатор селективной гидроочистки углеводородного сырья, описанный в Пат. США №5348928 B01J 21/04; B01J 23/78; B01J 23/88; B01J 37/04, 20.09.1994, содержащий в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя - от 0,5 до 50 мас. % магния и от 0,02 до 10 мас. % щелочного металла. Недостатком такого катализатора также является высокое содержание серы в продукте гидроочистки БКК при типичных условиях проведения процесса гидроочистки БКК. Степень удаления серосодержащих соединений может быть увеличена за счет применения более жестких условий проведения процесса гидроочистки БКК, однако, при таком варианте проведения процесса гидроочистки неизбежно увеличение степени гидрирования олефиновых углеводородов и значительное снижение октанового числа БКК, а также снижение продолжительности межрегенерационного пробега катализатора.

В Пат. США US 2005023192, C10G 45/04, 03.02.2005 описан катализатор гидроочистки БКК, содержащий носитель на основе оксида алюминия, модифицированный оксидом, по крайней мере, одного металла, выбранного из ряда: железо, хром, кобальт, никель, медь, цинк, иттрий, скандий, металлы группы лантаноидов, а также, по крайней мере, один металл группы VIA и групп VIII Периодической таблицы, нанесенный на носитель.

В Пат. ЕР №1013339, B01J 29/70, C10G 45/64, 28.06.2000 описан катализатор, содержащий цеолит ERS-10, металл VIII Периодической таблицы, металл группы VI и один или более оксидов в качестве носителя.

В качестве основного компонента носителя также может использоваться оксид магния. В Пат. США №4140626 C10G 23/02, 20.02.1979 описан процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния.

Общим недостатком указанных катализаторов является высокое остаточное содержание серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор, описанный в Пат. РФ №2575637, B01J 29/076, B01J 23/882, C10G 45/08, 12.01.2015. Катализатор содержит кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: МоО3 - 3,0-12,0; СоО - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 1,0-3,9-86,6%; Аl2О3 - остальное. Катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеет объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа. Недостатком данного катализатора является его низкая активность в обессеривании и значительное снижение октанового числа бензина при гидроочистке при условиях, при которых достигается остаточное содержание серы не более 10 ррm.

Предлагаемое изобретение решает задачу создания улучшенного катализатора гидроочистки БКК, характеризующегося оптимальным химическим составом и оптимальными текстурными характеристиками.

Технический результат - повышенная гидрообессеривающая активность катализатора в гидроочистке бензинов каталитического крекинга, а также повышенная селективность катализатора, выражающаяся в снижении степени гидрирования олефиновых углеводородов и уменьшении величины падения октанового числа бензина каталитического крекинга при проведении гидроочистки.

Задача решается катализатором гидроочистки БКК, включающим в свой состав кобальт, молибден и носитель, содержащим, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3. Катализатор имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Отличительным признаком предлагаемого катализатора гидроочистки БКК по сравнению с прототипом является состав катализатора, мас. %: [Со(Н2O)26H5O7)]2[Мо4O116Н5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Аl2О3 - остальное.

Выход содержания компонентов за заявляемые границы приводит к снижению активности и/или селективности катализатора.

Вторым существенным отличительным признаком предлагаемого катализатора является то, что он содержит аморфный алюмосиликат с массовым отношением Si/Al от 0,2 до 0,3. Использование аморфного алюмосиликата с соотношением Si/Al, выходящим за границы указанного диапазона, также приводит к снижению активности и/или селективности катализатора.

Технический результат складывается из следующих составляющих:

1. Оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат и борат алюминия Аl3ВО6 со структурой норбергита в составе катализатора позволяют увеличить селективность катализатора в гидроочистке БКК и снизить величину падения октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата и бората алюминия способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а, с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

Описание предлагаемого технического решения.

Сначала готовят алюмооксидный носитель, с оптимальными текстурными и кислотными характеристиками, обусловленными наличием в нем бората алюминия Аl3ВО6 со структурой норбергита и аморфного алюмосиликата.

Берут навеску продукта термической активации гидраргиллита (ПТАГ), приготовленного по технологии центробежной термоактивации (ИК СО РАН, ТУ 2175-040-03533913-2007), или любой другой технологии, обеспечивающей получение ПТАГ со следующими характеристиками: массовая доля рентгеноаморфной фазы, %, не менее 80; доля потери массы при прокаливании при (900±20)°С, % - 10-12; удельная поверхность, м2/г, не менее 120; суммарный объем пор (влагоемкость), см3/г, не менее 0,1; массовая доля гиббсита (гидраргиллита), %, не более 5; массовая доля натрия оксида, %, не более 0,5. Навеску измельчают на планетарной мельнице до частиц со средним размером 20-40 мкм.

Навеску измельченного порошка гидратируют при перемешивании в течение 2 ч в нагретых до 50°С слабоконцентрированных растворах азотной кислоты (кислотный модуль не более 0,03). После чего полученную суспензию фильтруют под вакуумом и многократно промывают дистиллированной водой. В результате получают влажный осадок. Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества борной кислоты при температуре раствора выше 120°С. После завершения гидротермальной обработки раствор охлаждают до комнатной температуры, автоклав разгружают, содержимое сосуда репульпируют дистиллированной водой до получения суспензии пригодной для распылительной сушки. Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не более 280°С и непрерывном перемешивании суспензии. Готовый порошок борсодержащего гидроксида алюминия выгружают из стакана циклонного пылеуловителя распылительной сушилки.

Далее по одной из известных методик получают порошок аморфного алюмосиликата с массовым отношением Si/Al от 0,2 до 0,3 и содержанием натрия не более 0,03%, который, например, может быть приготовлен смешением растворов сульфата алюминия и силиката натрия (жидкого стекла) в водно-аммиачном растворе с отделением образовавшегося осадка на фильтре, его промывкой избытком воды и сушкой на воздухе.

Далее готовят формовочную массу методом смешения и пептизации полученных порошков борсодержащего гидроксида алюминия и аморфного алюмосиликата в лабораторном смесителе с Z-образными лопастями в присутствии водного раствора лимонной кислоты. Раствор лимонной кислоты готовят таким образом, чтобы количество моногидрата лимонной кислоты С6H8О7×H2О составляло не более 5 г на 100 мл воды.

Компоненты берут в следующих массовых соотношениях: порошки гидрооксида алюминия:аморфного алюмосиликата:вода:лимонная кислота=1:0,6-1,0:0,9:0,045.

Перемешивание продолжают в течение 30-45 мин. В результате образуется однородная пластичная паста. Полученную пасту экструдируют через фильеру с отверстиями, форма и размер которых обеспечивают получение гранул с поперечным сечением в форме трилистника и круга с диаметром описанной окружности 1,3-3,0 мм. Полученный носитель сушат при температуре 100-150°С и прокаливают при температуре 550-600°С. Далее носитель измельчают по длине до частиц требуемого размера.

В результате получают однородный носитель белого цвета, представляющего собой частицы с сечением в виде трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие прочность не менее 1,0 кг/мм. Носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Аl2O3 - остальное, и имеет удельную поверхность 250-300 м2/г, объем пор 0,8-1,0 см3/г, средний диаметр пор 10-13 нм.

С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий биметаллическое комплексное соединение [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2]. Для этого отвешивают заданные количества парамолибдата аммония (NН4)6Мо7O24•4Н2О, кобальта (II) основного карбоната СоСО3•mСо(OH)2•nH2О, кислоты лимонной. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 60°С. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навеску парамолибдата аммония при постоянном перемешивании и поддержании температуры раствора (60±5)°С. Раствор перемешивают до образования однородного прозрачного раствора, содержащего комплексное соединение - цитрат молибдена (VI) (NН4)4[Мо46Н5O7)2O11]. Навеску кобальта (II) основного карбоната добавляют к ранее полученному водному раствору цитрата молибдена (VI). При этом жидкость вспенивается, а ее температура повышается до 70°С. Перемешивание продолжают при (65-70)°С до получения однородного прозрачного раствора темно-вишневого цвета, не содержащего мути, пузырьков и пены. Раствор содержит кобальт и молибден в форме биметаллического комплексного соединеня [Со(Н2О)26Н5O7)]2[Мo4O116Н5O7)2].

Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.

Полученным раствором пропитывают носитель, содержащий борсодержащий оксид алюминия и аморфный алюмосиликат, при этом используют пропитку носителя по влагоемкости. Пропитку проводят при температуре 20-80°С в течение 30-60 мин при периодическом перемешивании.

После пропитки катализатор сушат на воздухе при температуре не более 200°С. В результате получают катализатор, содержащий, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3. Катализатор имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. (Согласно известному техническому решению)

В лабораторный смеситель помещают 30 г порошка гидрооксида алюминия АlOOН, имеющего структуру бемита с размером кристаллов 45-60 , со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас. %, не более: N2O - 0,005; F2О3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трехлистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°С. Затем экструдаты прокаливают в муфельной печи при температуре 550°С в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°С и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°С в течение 4 ч, затем прокаливают при температуре 550°С в течение 3 ч в токе воздуха. Полученный катализатор имеет следующий состав (мас. %): Мо - 3,7%; Со - 0,85%; аморфный алюмосиликат - 66,5%; Аl2О3 - остальное.

Катализатор тестируют в гидроочистке бензина каталитического крекинга, которую проводят в проточном реакторе в следующих условиях: объемная скорость подачи сырья - 2 ч-1, соотношение H2/сырье - 350 нл/нл, давление - 1,7 МПа. Стартовая температура гидроочистки 230°С, после чего температуру поднимали ступеньками по 2-3°С до достижения остаточного содержания серы в продуктах гидроочистки 10 ррm.Эта температура, являющаяся показателем активности катализатора, фиксировалась в таблице 1.

В качестве сырья используют широкую фракцию БКК с интервалом кипения н.к.-220°С, содержанием серы 224 ррт, азота 50 ррт, малеиновым числом 0,7, октановым числом по исследовательскому методу 90,9 и по моторному методу 79,9. Перед каталитическими испытаниями катализатор может быть сульфидирован по известным методикам. Результаты тестирования приведены в таблице.

Примеры 2-4 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят борсодержащий порошок гидроксида алюминия, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки.

Затем готовят носитель. Смешение проводят в лабораторном смесителе с Z-образными лопастями. Отмеренные 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, загружают в емкость смесителя. Отмеренные 100 г порошка аморфного алюмосиликата с соотношением Si/Al=0,3, имеющего потери при прокаливании при 550°С 24,5%, загружают в емкость смесителя. Порошки перемешивают 15 минут.

К отмеренным в стеклянном стакане 180 мл дистиллированной воды добавляют 9 г лимонной кислоты, раствор перемешивают до полного растворения лимонной кислоты. Приготовленный раствор приливают к смеси борсодержащего алюминия гидроксида и аморфного алюмосиликата, и перемешивают до получения пластичной формовочной массы. Время перемешивания в среднем составляет 30 мин.

Готовую массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде трилистника диаметром 1,3 мм

Полученный носитель сушат при температуре 120°С и прокаливают при температуре 550°С. Далее носитель измельчают по длине до частиц требуемого размера.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 60 мл дистиллированной воды при перемешивании последовательно растворяют 9,8 г лимонной кислоты С6H8О7; 9,0 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 3,0 г кобальта (II) основного карбоната СоСО3•mСо(ОН)2•nН2O. Далее, добавлением дистиллированной воды объем раствора доводят до 90 мл.

90 г полученного носителя в течение 20 мин при 20°С пропитывают по влагоемкости 90 мл раствора, содержащего 19,2 г биметаллического соединения состава [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2]. Катализатор сушат на воздухе при 100°С 4 ч.

В результате получен катализатор, содержащий, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 17,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0; натрий - 0,02; аморфный алюмосиликат 50; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении 0,3. Катализатор имеет удельную поверхность 280 м2/г, объем пор 0,9 см3/г, средний диаметр пор 9 нм, представляет собой частицы с сечением в форме трилистника с диаметром 1,3 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471 - 1,0 МПа.

Тестирование в гидроочистке бензина каталитического крекинга проведено аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 3.

Порошок борсодержащего гидроксида алюминия готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 5,98 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4.

Операции по приготовлению носителя идентичны примеру 2, с той разницей, что в лабораторный смеситель с Z-образными лопастями к отмеренным 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, добавляют 80 г порошка аморфного алюмосиликата с соотношением Si/Al=0,2, имеющего потери при прокаливании при 550°С 25,5%, загружают в емкость смесителя. К порошкам добавляют раствор 9 г лимонной кислоты в 180 мл воды. Пасту перемешивают 45 мин, продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде трилистника диаметром 3 мм, гранулы сушат при 100°С и прокаливают при 650°С.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 60 мл дистиллированной воды при перемешивании последовательно растворяют 11,48 г лимонной кислоты С6Н8О7; 11,96 г парамолибдата аммония (МН4)6Мо7O24×4Н2О, 4,0 г кобальта (II) основного карбоната СоСО3•mСо(ОН)2•nН2O. Далее, добавлением дистиллированной воды объем раствора доводят до 90 мл.

100 г полученного носителя в течение 40 мин при 50°С пропитывают по влагоемкости 90 мл раствора, содержащего 25,5 г биметаллического соединения состава [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2]. Катализатор сушат на воздухе при 120°С 3 ч.

В результате получают катализатор, содержащий, мас. %: [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2] 22,5%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 12,0; натрий -не более 0,02; аморфный алюмосиликат 40; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2. Катализатор имеет удельную поверхность 245 м2/г, объем пор 0,8 см3/г, средний диаметр пор 10 нм, представляет собой частицы с сечением в форме трилистника с диаметром 3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471-1,3 МПа.

Тестирование в гидроочистке бензина каталитического крекинга проведено аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 4.

Порошок борсодержащего гидроксида алюминия готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 14,63 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4.

Операции по приготовлению носителя идентичны примеру 2, с той разницей, что в лабораторный смеситель с Z-образными лопастями к отмеренным 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, добавляют 60 г порошка аморфного алюмосиликата с соотношением Si/Al=0,25, имеющего потери при прокаливании при 550°С 25%, загружают в емкость смесителя. К порошкам добавляют раствор 9 г лимонной кислоты в 180 мл воды. Пасту перемешивают 45 мин, продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде круга диаметром 3 мм, гранулы сушат при 150°С и прокаливают при 600°С.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2], для чего в 50 мл дистиллированной воды при перемешивании последовательно растворяют 14,36 г лимонной кислоты С6Н8О7; 14,96 г парамолибдата аммония (NН4)6Мо7O24×4Н2О, 5,0 г кобальта (II) основного карбоната СоСО3•mСо(ОН)2•nН2O. Далее, добавлением дистиллированной воды объем раствора доводят до 80 мл.

100 г полученного носителя в течение 1 ч при 80°С пропитывают по влагоемкости 80 мл раствора, содержащего 31,9 г биметаллического соединения состава [Со(Н2O)26Н5O7)]2[Мо4O116Н5O7)2]. Катализатор сушат на воздухе при 150°С 2 ч.

В результате получен катализатор, содержащий, мас. %: [Со(Н2O)26Н5O7)2[Мо4O116Н5O7)2] 27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита 25,0; натрий - 0,03; аморфный алюмосиликат 30; γ-Аl2О3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении 0,25. Катализатор имеет удельную поверхность 220 м2/г, объем пор 0,7 см3/г, средний диаметр пор 12 нм, представляет собой частицы с сечением в форме круга с диаметром 3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471-1,6 МПа.

Тестирование в гидроочистке бензина каталитического крекинга проведено аналогично примеру 1. Результаты тестирования приведены в таблице.

Как видно из приведенных примеров, предлагаемые катализаторы гидроочистки бензина каталитического крекинга имеют более высокую активность и селективность в сравнении с катализатором-прототипом.

1. Катализатор гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден и носитель, отличающийся тем, что он содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат - 30-50; γ-Al2O3 - остальное, входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3.

2. Катализатор по п. 1, отличающийся тем, что он имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.



 

Похожие патенты:

Предложен способ приготовления катализатора для процесса гидрооблагораживания дизельных дистиллятов, содержащего активный компонент, в состав которого входят оксиды никеля, молибдена и фосфора, диспергированные на алюмооксидном носителе, полученного пропиткой гранул носителя пропиточным раствором, содержащим соединения молибдена, никеля, фосфора и лимонную кислоту в дистиллированной воде, отличающийся тем, что в качестве соединения никеля применяют гидроксид и/или оксид никеля.
Настоящее изобретение относится к способам гидрообработки углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C. Описан способ гидрообработки по меньшей мере одного углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C, причем способ осуществляют при температуре в интервале от 250 до 430°C, при общем давлении в интервале от 4 до 20 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 200 до 2000 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 0,5 до 5 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов, и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, указанная вторая стадия a’) осаждения осуществляется путем добавления к суспензии по меньшей мере одного основного предшественника и одного кислотного предшественника, b) стадию термической обработки суспензии, полученной после стадии a’), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.

Предложен катализатор гидроочистки дизельного топлива, включающий в свой состав соединения кобальта, молибдена, фосфора и носитель. Катализатор содержит, мас.

Настоящее изобретение относится к области гидрообработки углеводородного сырья типа газойля. Описан способ гидрообработки по меньшей мере газойлевой фракции, имеющей средневзвешенную температуру (TMP) в интервале от 240 до 350°C, причем способ осуществляют при температуре в интервале от 250 до 400°C, при общем давлении в интервале от 2 до 10 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 100 до 800 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 1 до 10 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, b) стадию термической обработки суспензии, полученной после стадии a), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов, что обеспечивает получение геля оксида алюминия; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.

Изобретение относится к области нефтепереработки. Изобретение касается способа гидроочистки бензина каталитического крекинга, выкипающего в интервале от 0 до 235°С, содержащего до 0,1% серы, имеющего октановое число по исследовательскому методу до 95, заключающийся в пропускании смеси бензина каталитического крекинга и водорода через реактор при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас.

Изобретение относится к способам приготовления катализаторов гидроочистки бензина каталитического крекинга и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения катализатора гидродеметаллизации, содержащего: подложку из оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET более или равную 100 м2/г, полный объем пор более или равный 0,75 мл/г, среднеобъемный диаметр мезопор от 18 до 26 нм, объем мезопор более или равный 0,65 мл/г, объем макропор от 15 до 40% от полного объема пор; и причем указанный способ включает в себя, по меньшей мере, следующие этапы: a) растворение кислотного предшественника алюминия, b) регулирование значения pH с помощью щелочного предшественника, c) соосаждение кислотного предшественника и щелочного предшественника, причем по меньшей мере один из двух содержит алюминий, чтобы получить суспензию алюмогеля с желаемой концентрацией оксида алюминия, d) фильтрация, e) сушка, чтобы получить порошок, f) формование, g) термообработка, чтобы получить алюмооксидную подложку, h) введение, путем пропитки, активной гидрирующей-дегидрирующей фазы на указанную алюмооксидную подложку.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g).

Изобретение относится к способу получения катализатора гидроконверсии с бимодальной пористой структурой, с полностью смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу из обожженного оксида алюминия, имеющую содержание оксида алюминия более или равное 90% и содержание оксида кремния не более 10% по весу в эквиваленте SiO2 относительно массы матрицы, включающий этапы (а)–(j), раскрытые в п.1 формулы изобретения.

Изобретение относится к мезопористому и макропористому катализатору гидроконверсии с активной фазой, к способу получения такого катализатора, а также к способу гидроочистки тяжелого углеводородного сырья.

Изобретение относится к композиции для систем постобработки выхлопного газа дизельных двигателей, бензиновых двигателей сгорания, двигателей на обедненной смеси и электростанций, имеющей формулу Се1-a-b-cNaMbDcOx (I), в которой М обозначает калий, N обозначает Вi и/или Sb, D присутствует или отсутствует, и если присутствует, то выбирается из одного или нескольких элементов из Mg, Ca, Sr, Ba; Y, Lа, Рr, Nd, Sm, Gd, Еr; Fе, Zr, Nb, Аl; а является числом в интервале 0<а≤0,9, b является числом в интервале 0<b≤0,3, с является числом в интервале 0≤с≤0,2; а плюс b плюс с равно <1, и х является числом в интервале 1,2≤х≤2.

Изобретение относится к катализатору окисления для обработки выхлопных газов, производимых дизельным двигателем, включающему носитель и каталитический слой, включающий первый подложечный материал носителя, палладий и платину.

Изобретение относится к способу получения катализатора гидродеметаллизации, содержащего: подложку из оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET более или равную 100 м2/г, полный объем пор более или равный 0,75 мл/г, среднеобъемный диаметр мезопор от 18 до 26 нм, объем мезопор более или равный 0,65 мл/г, объем макропор от 15 до 40% от полного объема пор; и причем указанный способ включает в себя, по меньшей мере, следующие этапы: a) растворение кислотного предшественника алюминия, b) регулирование значения pH с помощью щелочного предшественника, c) соосаждение кислотного предшественника и щелочного предшественника, причем по меньшей мере один из двух содержит алюминий, чтобы получить суспензию алюмогеля с желаемой концентрацией оксида алюминия, d) фильтрация, e) сушка, чтобы получить порошок, f) формование, g) термообработка, чтобы получить алюмооксидную подложку, h) введение, путем пропитки, активной гидрирующей-дегидрирующей фазы на указанную алюмооксидную подложку.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g).
Изобретение относится к способу оксихлорирования, включающему превращение этилена в 1,2-дихлорэтан (ДХЭ) в присутствии медного катализатора на носителе, который получен посредством (i) пропитки, на первой стадии, алюмооксидного носителя первым водным раствором, содержащим медь, дополнительный переходный металл, щелочной металл и щелочноземельный металл, чтобы таким образом образовался первый компонент катализатора; и (ii) пропитки, в последующей стадии, первого компонента катализатора вторым водным раствором, содержащим медь и щелочноземельный металл, где второй водный раствор содержит щелочноземельный металл и медь в молярном соотношении более 0,19, чтобы таким образом образовался катализатор на носителе.

Изобретение относится к способу получения катализатора гидроконверсии с бимодальной пористой структурой, с полностью смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу из обожженного оксида алюминия, имеющую содержание оксида алюминия более или равное 90% и содержание оксида кремния не более 10% по весу в эквиваленте SiO2 относительно массы матрицы, включающий этапы (а)–(j), раскрытые в п.1 формулы изобретения.

Изобретение относится к мезопористому и макропористому катализатору гидроконверсии с активной фазой, к способу получения такого катализатора, а также к способу гидроочистки тяжелого углеводородного сырья.

Изобретение относится к композиту катализатора окисления, способу и системе для обработки выбросов выхлопных газов из дизельного двигателя. Композит катализатора окисления включает первое покрытие типа «washcoat», включающее цеолит, Pt-компонент и первую подложку из тугоплавкого оксида металла, содержащую марганец, второе покрытие типа «washcoat», включающее вторую подложку из тугоплавкого оксида металла, Pt-компонент и Pd-компонент при весовом соотношении Pt:Pd, находящемся в диапазоне от 10:1 до 1:10, и третье покрытие типа «washcoat», включающее палладий и компонент оксида редкоземельного элемента.

Изобретение относится к области фотокатализа, основанного на способности катализаторов активироваться под действием света или ультрафиолетового излучения и ускорять различные реакции.

Изобретение относится к двигателестроению, в частности к системам очистки выхлопных газов. Система очистки выхлопных газов двигателя внутреннего сгорания, включающая каталитический нейтрализатор выхлопных газов, в котором один из Rh, Pd и Pt нанесен на CeO2-содержащий носитель.

Настоящее изобретение относится к способу получения гомополимеров бутадиена, который включает полимеризацию 1,3-бутадиена в присутствии каталитической системы, включающей: (а) по меньшей мере один бис-имино-пиридиновый комплекс кобальта, имеющий общую формулу (I): , в котором: R2 и R3 одинаковы и выбраны из неразветвленных или разветвленных С1-С20 алкильных групп; R1 и R4 различны и выбраны из необязательно замещенных С3-С30 циклоалкильных групп, необязательно замещенных арильных групп, арилалкильных групп; R5, R6 и R7 одинаковы и представляют собой атом водорода; X1 и Х2 одинаковы и представляют собой атом галогена, такой как хлор, бром, йод; (b) по меньшей мере один сокатализатор, выбранный из органических кислородсодержащих соединений (b2), выбранных из алюмоксанов, имеющих общую формулу (III): , в которой R10, R11 и R12 одинаковы или различны и представляют собой атом водорода, атом галогена, такой как хлор, бром, йод, фтор; или они выбраны из неразветвленных или разветвленных С1-С20 алкильных групп, С3-С30 циклоалкильных групп, арильных групп, и эти группы необязательно замещены одним или более атомами кремния или германия; и p представляет собой целое число, составляющее от 0 до 1000.
Наверх