Способ получения катализатора деметаллизации нефтяных фракций

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием, и последующее нанесение на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена. В качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера. В качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5. Содержание активных компонентов в пересчете на оксиды в прокаленном катализаторе составляет 5,0-7,0% масс. MoO3; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO. Полученный катализатор имеет удельную поверхность не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г. Предлагаемый способ получения катализатора деметаллизации, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления как никеля, так и ванадия 85% и более. 4 з.п. ф-лы, 1 табл., 4 пр.

 

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций.

Основная масса тяжелых металлов (никеля и ванадия), сконцентрированная в высококипящей части нефти, содержится в асфальтосмолистых веществах в форме металлорганических соединений и комплексов (порфиринов).

В условиях гидрогенизационного облагораживания металлсодержащих нефтяных фракций происходит накопление металлов в пористой структуре катализаторов, что приводит к их необратимой дезактивации и сокращению длительности эксплуатации. В этой связи особое значение приобретают текстурные свойства носителя (размер, объем и распределение пор, удельная поверхность). В случае малого размера пор углеродистые отложения и примеси накапливаются в порах катализатора, блокируя доступ реагентов к каталитическим центрам, что приводит к быстрой дезактивации катализатора.

Известен способ получения катализатора гидрооблагораживания углеводородного сырья, содержащего асфальтены и тяжелые металлы, на основе носителя, представляющего собой прокаленные экструдаты из смеси глины, состоящей из силиката магния, с псевдобемитом, активных компонентов из числа ванадия, хрома, молибдена, вольфрама, кобальта, никеля и меди, а также вспомогательных компонентов, используемых при синтезе носителя из числа бора, фосфора, фтора и их соединений

При этом катализаторы, содержащие MoO3 - до 14,2% масс., СоО - до 3,7% масс., NiO - до 1,5% масс., имеют удельную поверхность от 40 до 188 м2/г, объем пор от 0,1 до 0,79 см3/г. Катализаторы использовали для переработки сырья, содержащего до 6,83% масс. асфальтенов, до 4,5% масс. серы, до 505 ppm ванадия, до 106 ppm, никеля, при температуре 405°С, давлении водорода 140-168 ати, объемной скорости 0,3-1,0 час-1. Качество полученных продуктов (содержание асфальтенов до 0,3% масс., серы до 0,28% масс., азота до 0,17% масс., ванадия до 2 ppm, никеля до 2,5 ppm), что позволяет в дальнейшем получать из них посредством каталитического крекинга и гидрокрекинга товарные моторные топлива.

(Патент US №4439312, 1984).

Недостатками способа являются жесткие требования, предъявляемые к кристаллическому строению псевдобемита, и реализуемые сложными фиксированными способами, труднореализуемыми на практике. При этом, нерегулярная пористая структура носителя способствует образованию узких мест, при блокировке которых внутренняя часть катализатора становится недоступной для макромолекул, содержащихся в перерабатываемом сырье.

Известен способ приготовления катализаторов деметаллизации на носителях на основе природного магнийсиликата - сепиолита с добавлением бемита в соотношении 80:20; 50:50; 20:80. Носители имеют объем пор до 0,8 см3/г и удельную поверхность до 210 м2/г. В носители вводили оксиды кобальта, никеля, молибдена, ванадия, меди цинка, церия из водных растворов солей этих элементов.

Катализаторы использовали для деметаллизации тяжелых нефтяных фракций, содержащих 2,87% масс. серы, 150 ppm ванадия, 41 ppm никеля, 3 ppm железа, при температуре 415°С, давлении водорода 140 ати, объемной скорости 1,0 час-1. При переработке сырья с содержанием металлов в несколько сотен ppm были получены продукты с низким содержанием металлов и серы.

(Патент US №4196102, 1980).

Недостаток способа - слабая деметаллизирующая активность катализаторов в условиях гидрооблагораживания среднедистиллятных фракций.

Для решения проблемы ускоренной дезактивации в условиях гидрооблагораживания тяжелых нефтяных фракций, как правило, используются катализаторы с существенной долей макропор с размером более 50 нм. Развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора и уменьшает негативное влияние отложений побочных продуктов реакции, асфальтенов, металлоорганических соединений, содержащихся в сырье.

Одним из методов создания макропор в катализаторах гидропереработки является использование на стадии синтеза носителей материалов с регулярной пространственной структурой макропор.

Известен способ приготовления катализатора для переработки тяжелых фракций нефти, в соответствии с которым активный компонент, выбранный из соединений никеля, или кобальта, или молибдена, или вольфрама или любой их комбинации, нанесен на неорганический пористый носитель, состоящий из оксида алюминия, диоксидов кремния, титана или циркония, алюмосиликатов или железосиликатов, или любой их комбинации.

Содержание кобальта, никеля, модибдена и вольфрама составляет для каждого компонента не более 20% масс.

Указанный катализатор содержит макропоры, образующие регулярную пространственную структуру макропор, причем доля макропор размером более 50 нм составляет не менее 30% в общем удельном объеме пор указанного катализатора.

Для получения пространственной структуры макропор используют темплаты - полимерные наносферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей. Технический результат - высокая гидродеметаллизирующая активность при переработке остаточных нефтяных фракций.

(Патент РФ 2506997, 2014 г.).

Недостатки:

- сложность приготовления полимерного темплата;

- низкая эффективность катализатора деметаллизации в условиях гидрооблагораживания среднедистиллятных фракций в связи с существенной долей в структуре катализатора макропор размером более 50 нм и отсутствием специфических центров адсорбции.

Известен способ приготовления катализатора для переработки тяжелого нефтяного сырья, содержащий активный компонент, выбираемый из соединений никеля, кобальта, молибдена, вольфрама или любой их комбинации, который нанесен на неорганический пористый носитель. Содержание кобальта, никеля, модибдена и вольфрама составляет для каждого компонента не более 20% масс. Катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.

(Патент РФ №2527573, 2014 г.).

Катализатор содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанного катализатора, а в качестве носителя он содержит сепиолит - силикат магния.

Для получения регулярной пространственной структуры макропор используют темплаты - полимерные наносферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата как в виде индивидуальных веществ, так и их смесей. Технический результат - улучшенная каталитическая активность в условиях гидропереработки тяжелых нефтяных фракций.

Недостатки:

- сложность приготовления полимерного темплата для носителя;

- высокое содержание активных компонентов увеличивает стоимость катализатора;

- низкая эффективность катализатора в процессе деметаллизации среднедистиллятных фракций в условиях их облагораживания.

Наиболее близким к предлагаемому является способ получения катализаторов деметаллизации нефтяных фракций, выполняющих роль защиты основного катализатора в широком диапазоне условий гидрооблагораживания: от преобладания адсорбционного взаимодействия металлсодержащих компонентов сырья с поверхностью катализатора до стадии глубокого их превращения.

(Патент РФ №2563252, 2015 г.).

Способ состоит в смешении порошков оксида алюминия, природных алюмосиликатных материалов, отработанных никельмолибденсодержащих катализаторов, введении водных растворов соединений молибдена и никеля, введении гидросиликазоля в количестве 2-12% масс., введении в качестве выгорающей добавки муки древесной или муки пищевой в количестве 10-20% масс., а также активатора формования (солидола жирового) в количестве 4-7% масс., формования, сушки и прокаливания.

На основе способа получен набор катализаторов с закономерным снижением насыпной плотности и прочности и возрастанием объема пор в интервале содержания гидросиликазоля 2-12% масс., что позволяет использовать катализаторы по предлагаемому способу в качестве защитного слоя в виде одного, двух и более слоев в процессе гидрооблагораживания среднедистиллятной фракции.

Недостатки:

- сложность приготовления формовочной смеси;

- использование в качестве выгорающих добавок древесной и/или пищевой муки предъявляет жесткие требования к атмосфере прокаливания экструдатов;

невысокая деметаллизирующая активность, обусловленная применяемым способом приготовления катализатора - методом механического смешения исходных компонентов, при котором активные компоненты (металлы) находятся не на активной поверхности катализатора, а в объеме инертного носителя.

Характерной особенностью процессов гидрооблагораживания нефтяных фракций с относительно невысоким содержанием никеля и ванадия является эксплуатация катализаторов в неоптимальных для превращения металлоорганических соединений температурных условиях. В этих условиях возрастает роль физической адсорбции металлических примесей на внутренней поверхности пористых гранул катализаторов, соответственно возрастают требования к объему пор и адсорбционным свойствам поверхности защитных катализаторов. Предпочтительны катализаторы, имеющие макро- и микропоры; имеющие на внутренней поверхности пор активные центры предпочтительно адсорбционного типа и одновременно активные центры целевого процесса катализа.

Задачей изобретения является разработка способа получения катализатора деметаллизации, обладающего функциями адсорбции и катализа, и обеспечивающего в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления тяжелых металлов 85% и более.

Поставленная задача решается способом получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием, и последующее нанесение на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена.

Полученный носитель формуют экструзией с получением гранул, имеющих форму полого цилиндра или цилиндра или трилистника или квадролоба.

В качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера.

В качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5.

Содержание активных компонентов в пересчете на оксиды в прокаленном катализаторе составляет 5,0-7,0% масс. MoO3; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO.

Полученный катализатор имеет удельную поверхность не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г.

Основными преимуществами предлагаемого способа являются:

- простота и безотходность метода приготовления носителя, обеспечивающего получение носителя с оптимальными для катализаторов деметаллизации нефтяных фракций структурными характеристиками и формой гранул. Совокупность свойств носителя позволяет получать катализатор деметаллизации, обеспечивающий не менее, чем 85%-ную глубину удаления тяжелых металлов, содержащихся в сырье.

- использование широко доступных и дешевых темплатов - парафиновых эмульсий, применяющихся в лесоперерабатывающей промышленности при производстве древесных плитных материалов, или дисперсий стирол-акрилового сополимера, применяющихся для производстве лакокрасочных материалов, обеспечивает получение мезо-макропористого алюмооксидного носителя с размером макропор 0,2-2,0 мкм;

- использование гетерополисоединений и хелатирующего агента обеспечивает высокую деметаллизирующую активность катализатора.

- получение катализатора, характеризующегося высокой адсорбционной емкостью и каталитической активностью в условиях гидрооблагораживания нефтяных фракций с относительно небольшим содержанием примесей никеля и ванадия, асфальтенов.

- одностадийное введение активных металлов в состав катализатора и возможность длительного хранения и повторного использования пропиточных растворов.

Реализация способа иллюстрируется следующими примерами.

1. Сырье и реагенты

Раствор азотнокислого алюминия

Алкоксид алюминия

Ультрастабильный цеолит Y

Высококремнеземный цеолит ZSM-5

Парафиновая эмульсия с диаметром частиц 0,1-2,0 мкм

Дисперсия стирол-акрилового сополимера с диаметром частиц 0,1-2,0 мкм

Карбонат никеля

Декамолибдодикобальтат аммония

Лимонная кислота

Дистиллированная вода

Вода химически очищенная (ХОВ).

2. Приготовление носителя

Носитель готовят осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора. Далее к полученной массе добавляют порошок цеолита в количестве 5-30% масс. на сухой носитель катализатора.

Полученный носитель формуют экструзией с получением гранул, имеющих форму полого цилиндра, или цилиндра, или трилистника, или квадролоба.

Полученные гранулы провяливают на воздухе при температуре 20-30°С, затем сушат и прокаливают на воздухе при температурах 60°С в течение 2 часов, 80°С в течение 2 часов, 110°С в течение 2 часов, 250°С в течение 2-5 часов, 550°С в течение 2-5 часов, но в любом случае до полного удаления темплата макропор.

Полученный носитель охлаждают до 20-30°С и определяют его влагоемкость (водопоглощение).

3. Нанесение на носитель активных компонентов

Готовят раствор прекурсоров активных компонентов.

К объему химически очищенной или дистиллированной воды, равному пятой части от влагоемкости пропитываемого носителя, добавляют смесь карбоната никеля, в количестве, обеспечивающем выбранное содержание NiO в готовом катализаторе (в перечете на прокаленный) и лимонной кислоты, в таком количестве, чтобы на 1 моль никеля приходилось 1-1,5 моля лимонной кислоты.

Полученную суспензию перемешивают в закрытой емкости при температуре 90-95°С до получения истинного раствора. Объем полученного раствора доводят химически очищенной или дистиллированной водой до влагоемкости пропитываемого носителя, добавляют декамолибдодикобальтат аммония в количестве, обеспечивающем выбранное содержание МоО3 и СоО в готовом катализаторе (в пересчете на прокаленный). Полученный раствор охлаждают до температуры 20-30°С.

Раствор прекурсоров активных компонентов наносят на носитель при постоянном перемешивании. Возможно использование предварительной дегазации носителя. Пропитанный носитель выдерживают в закрытой емкости в течение 1 часа, тщательно перемешивая через каждые 30 минут.

Полученный влажный катализатор просушивают на воздухе при 20-30°С в течение 2 часов, при 60°С в течение 2 часов, при 110°С в течение 2-5 часов, но в любом случае до полного прекращения выделения паров воды.

В результате получают катализатор деметаллизации на носителе, содержащем 70-95% массовых макро-мезопористого оксида алюминия и 5-30% массовых ультрастабильного цеолита Y или цеолита ZSM-5 или смеси указанных цеолитов, с удельной поверхностью не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г., на который нанесены активные компоненты (соединения молибдена, никеля и кобальта), в пересчете на оксиды в полученном катализаторе: 5-7,0% масс. МоО3, 0,5-0,7% масс. СоО, 0,7-1,1% масс. NiO.

4. Условия испытания

Образцы катализаторов испытывали на проточной лабораторной гидрогенизационной установке.

В реактор загружали фракцию катализатора 0,25-0,5 мм в объеме 10 см3, разбавленную карбидом кремния в соотношении 1:1. Для активации загруженный катализатор сульфидировали смесью, приготовленной из прямогонной дизельной фракции с добавлением диметилдисульфида так, чтобы добавленное количество серы составляло 1% масс. Сульфидирование проводили при температурах 240°С (10 часов) и при 340°С (6 часов) с объемной скоростью 2 ч-1 при давлении 4,0 МПа.

В качестве сырья использовали вакуумный газойль с пределами выкипания 350-500°С, плотностью при 20°С, равной 914 кг/м3, коксуемостью 0,3% масс. и содержанием серы 16200 мг/кг, в который была введена смесь нафтенатов никеля и ванадия таким образом, чтобы содержание никеля и ванадия в сырье составляло 200 мг/кг и 144 мг/кг, соответственно.

Гидродеметаллизацию вакуумного газойля проводили в среде водорода под давлением 5 МПа, температуре 360°С, соотношении водород: сырье 500 нл/л, объемной скорости подачи сырья (ОСПС) 5,10 и 15 ч-1.

Эффективность катализаторов оценивали по остаточному содержанию в гидрогенизатах никеля и ванадия.

Ниже в таблице 1 приведены показатели синтезированных катализаторов и их эффективность в процессе деметаллизации.

Из данных, представленных в таблице 1 видна взаимосвязь между объемом пор и глубиной удаления металлов при изменении объемной скорости подачи сырья от 5 до 15 ч-1. Глубина удаления металлов изменяется от 98 до 87% для никеля и от 95 до 85% для ванадия при изменении объема пор катализатора от 0,45 до 0,75 см3/г.

Глубина удаления никеля и ванадия (85÷98%) на катализаторе по предлагаемому способу значительно превышает таковую (73%) для катализаторов с аналогичными структурными характеристиками (удельная поверхность и объем пор), что свидетельствует о высокой металлоемкости катализатора по предлагаемому способу.

Таким образом, приведенные примеры показывают, что разработанный способ получения катализатора деметаллизации, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления как никеля, так и ванадия 85% и более.

1. Способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием и последующим нанесением на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена.

2. Способ по п. 1, отличающийся тем, что в качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера.

3. Способ по п. 1, отличающийся тем, что в качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5.

4. Способ по п. 1, отличающийся тем, что содержание активных компонентов в пересчете на оксиды в полученном катализаторе составляет 5,0-7,0% масс. МоО3; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO.

5. Способ по п. 1, отличающийся тем, что полученный катализатор имеет удельную поверхность не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г.



 

Похожие патенты:

Катализатор глубокого гидрообессеривания вакуумного газойля содержит, мас.%: оксид кобальта 6-8, оксид молибдена 18-24 и носитель, состоящий из оксида кремния 6-16 и оксида алюминия-остальное, в том числе: 20-60 мас.% оксида алюминия в виде бемита, 20-40 мас.% оксида алюминия, полученного предварительной обработкой гидроксида алюминия 1-5%-ным раствором азотной кислоты при температуре раствора 5-10 °С, просушенного распылением в токе горячего воздуха, и 20-40 мас.% оксида алюминия в виде мезопористого алюмосиликата.

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора.
Изобретение относится к катализатору гидродесульфуризации для дизельного топлива, в котором один или несколько металлов, выбранных из группы, состоящей из элементов Группы 6 длинной формы Периодической таблицы, один или несколько металлов, выбранных из группы, состоящей из элементов Группы 9 или 10 длинной формы Периодической таблицы, фосфор и органическая кислота нанесены на носитель на основе смешанного оксида, содержащий 80-99,5 % масс.
Изобретение касается способа обработки ex-situ катализатора, содержащего, по меньшей мере, одну гидрирующую фазу и, по меньшей мере, один аморфный алюмосиликат или цеолит, содержащий кислотные центры.

Изобретение относится к каталитической системе и способу полной гидропереработки тяжелых нефтей. Каталитическая система включает в себя: первый катализатор, имеющий функцию гидрирования, состоящий из твердых частиц, из которых по меньшей мере 95% по объему имеют эквивалентный диаметр меньше чем 20 мкм, содержащий один или более сульфидов металлов VI группы и/или группы VIIIB, и второй катализатор, имеющий функцию крекинга, состоящий из твердых частиц, из которых по меньшей мере 90% по объему имеют эквивалентный диаметр больше чем 5 мкм и меньше чем 5 мм, содержащий аморфный алюмосиликат, и/или кристаллический алюмосиликат, и/или оксид алюминия, при этом средний эквивалентный диаметр твердых частиц второго катализатора является большим, чем средний эквивалентный диаметр твердых частиц первого катализатора.

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов авиационных керосинов и дизельных топлив для арктических условий.

Изобретение относится к области нефтепереработки, а именно разработке катализатора и способа изодепарафинизации дизельных дистиллятов с целью получения дизельных топлив зимних и арктического сортов.
Изобретение относится к каталитической системе для гидропереработки тяжелых масел. Данная каталитическая система включает катализатор, имеющий функцию катализатора гидрирования, и сокатализатор.
Изобретение относится к катализаторам гидроочистки. .

Изобретение относится к способу гидроочистки синтетической нефти, осуществляемому контактированием синтетической нефти, полученной посредством синтеза Фишера-Тропша и имеющей содержание углеводородов С9-21 90 массовых % или более, с катализатором гидроочистки, который представляет собой катализатор, который содержит носитель, содержащий одну или более твердых кислот, выбранных из сверхстабильного Y-(USY) цеолита, алюмосиликатного, циркониевосиликатного и алюмоборного окисного катализатора, и по меньшей мере один металл, выбранный из группы, состоящей из металлов, принадлежащих к группе VIII Периодической Таблицы, нанесенный на носитель, в присутствии водорода с регулированием температуры реакции при контактировании катализатора гидроочистки с синтетической нефтью, для гидроочистки синтетической нефти таким образом, что содержание (массовые %) С8 и более низких углеводородов в синтетической нефти после контакта составляет на 3-9 массовых % больше, чем перед контактом.
Изобретение относится к способам гидрогенизационной переработки углеводородного сырья в присутствии каталитической системы и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением продукта - компонента товарного бензина - с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности.

Предложен способ приготовления катализатора для процесса гидрооблагораживания дизельных дистиллятов, содержащего активный компонент, в состав которого входят оксиды никеля, молибдена и фосфора, диспергированные на алюмооксидном носителе, полученного пропиткой гранул носителя пропиточным раствором, содержащим соединения молибдена, никеля, фосфора и лимонную кислоту в дистиллированной воде, отличающийся тем, что в качестве соединения никеля применяют гидроксид и/или оксид никеля.
Настоящее изобретение относится к способам гидрообработки углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C. Описан способ гидрообработки по меньшей мере одного углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C, причем способ осуществляют при температуре в интервале от 250 до 430°C, при общем давлении в интервале от 4 до 20 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 200 до 2000 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 0,5 до 5 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов, и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, указанная вторая стадия a’) осаждения осуществляется путем добавления к суспензии по меньшей мере одного основного предшественника и одного кислотного предшественника, b) стадию термической обработки суспензии, полученной после стадии a’), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.

Предложен катализатор гидроочистки дизельного топлива, включающий в свой состав соединения кобальта, молибдена, фосфора и носитель. Катализатор содержит, мас.

Настоящее изобретение относится к области гидрообработки углеводородного сырья типа газойля. Описан способ гидрообработки по меньшей мере газойлевой фракции, имеющей средневзвешенную температуру (TMP) в интервале от 240 до 350°C, причем способ осуществляют при температуре в интервале от 250 до 400°C, при общем давлении в интервале от 2 до 10 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 100 до 800 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 1 до 10 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, b) стадию термической обработки суспензии, полученной после стадии a), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов, что обеспечивает получение геля оксида алюминия; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.

Изобретение относится к области нефтепереработки. Изобретение касается способа гидроочистки бензина каталитического крекинга, выкипающего в интервале от 0 до 235°С, содержащего до 0,1% серы, имеющего октановое число по исследовательскому методу до 95, заключающийся в пропускании смеси бензина каталитического крекинга и водорода через реактор при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас.

Изобретение относится к способам приготовления катализаторов гидроочистки бензина каталитического крекинга и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения катализатора гидродеметаллизации, содержащего: подложку из оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET более или равную 100 м2/г, полный объем пор более или равный 0,75 мл/г, среднеобъемный диаметр мезопор от 18 до 26 нм, объем мезопор более или равный 0,65 мл/г, объем макропор от 15 до 40% от полного объема пор; и причем указанный способ включает в себя, по меньшей мере, следующие этапы: a) растворение кислотного предшественника алюминия, b) регулирование значения pH с помощью щелочного предшественника, c) соосаждение кислотного предшественника и щелочного предшественника, причем по меньшей мере один из двух содержит алюминий, чтобы получить суспензию алюмогеля с желаемой концентрацией оксида алюминия, d) фильтрация, e) сушка, чтобы получить порошок, f) формование, g) термообработка, чтобы получить алюмооксидную подложку, h) введение, путем пропитки, активной гидрирующей-дегидрирующей фазы на указанную алюмооксидную подложку.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g).

Предложен способ приготовления катализатора для процесса гидрооблагораживания дизельных дистиллятов, содержащего активный компонент, в состав которого входят оксиды никеля, молибдена и фосфора, диспергированные на алюмооксидном носителе, полученного пропиткой гранул носителя пропиточным раствором, содержащим соединения молибдена, никеля, фосфора и лимонную кислоту в дистиллированной воде, отличающийся тем, что в качестве соединения никеля применяют гидроксид и/или оксид никеля.
Наверх