Способ автономной навигации маловысотных летательных аппаратов



Способ автономной навигации маловысотных летательных аппаратов
Способ автономной навигации маловысотных летательных аппаратов
Способ автономной навигации маловысотных летательных аппаратов

Владельцы патента RU 2691124:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов в соответствии с корреляционно-экстремальным принципом навигации. Достигаемый технический результат - повышение скрытности, помехоустойчивости и разрешающей способности по дальности, а также точности определения наклонных дальностей в радиолокационных рельефометрических системах маловысотных летательных аппаратов. Указанный результат достигается за счет того, что в способе автономной навигации маловысотных летательных аппаратов, включающем определение наклонных дальностей летательного аппарата до земной поверхности, заключающемся в излучении радиоволн в виде нескольких лучей и последующем приеме отраженных радиоволн по одному широкому лучу, радиоволны в каждом из лучей излучают одновременно в виде статистически независимых широкополосных шумовых сигналов, отраженные радиоволны разделяют по лучам и определяют наклонные дальности летательного аппарата до земной поверхности корреляционным способом с использованием части излучаемых по каждому лучу шумовых сигналов в качестве опорных функций. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем (РРС), предназначенных для определения местоположения летательных аппаратов (ЛА) в соответствии с корреляционно-экстремальным принципом навигации [1].

Реализация данного принципа заключается в составлении текущей карты местности (ТКМ) по данным измерений параметров мерного участка подстилающей поверхности однолучевым или многолучевым радиолокатором с последующим сравнением ТКМ с эталонной картой местности (ЭКМ), находящейся на борту ЛА до начала его движения. Вычисляют сигнал коррекции местоположения ЛА на основе анализа различий (взаимных смещений) ЭКМ и ТКМ мерного участка. Управляют движением ЛА путем коррекций его местоположения.

Известен способ автономной навигации ЛА [2] на основе РРС с использованием радиоволн, излучающихся последовательно в виде нескольких лучей, выбранный за аналог.

Определение местоположения ЛА в рамках данного способа осуществляется в плановых координатах мерного участка на основе измерений наклонных дальностей ЛА до подстилающей поверхности, сигнал коррекции вычисляют в соответствии с дифференциально-разностным алгоритмом обработки многолучевых измерений (ДРАОМИ) [2].

Недостатки способа [2] следующие:

- низкая помехоустойчивость;

- низкая скрытность работы РРС;

- низкое быстродействие определения текущего местоположения ЛА;

- ограничение применения способа навигации на минимальных высотах полета ЛА над мерным участком.

Причиной первого недостатка является узкий спектр используемых сигналов, что позволяет подавлять сигналы РРС прицельными узкополосными помехами.

Причиной второго недостатка является высокая мгновенная мощность используемых сигналов, время излучения которых при прохождении мерного участка равно суммарному времени излучения по всем лучам.

Причиной третьего недостатка является последовательный переход излучения и приема радиоволн с одного луча на другой луч, при котором за время излучения и приема по одному лучу ЛА перемещается относительно отражающей поверхности и в результате при излучении и приеме радиоволн по другим лучам пятно засветки, дальность до которого определяется, оказывается смешено вперед по курсу полета ЛА. Это приводит к зависимости точности определения текущего местоположения ЛА от скорости его движения и длительности излучаемых радиоволн. Следовательно, несмотря на то, что увеличение точности определения местоположения ЛА происходит с увеличением количества лучей из-за существенного увеличения поступающей информации за один такт измерения, максимальное число используемых лучей радиоволн при их последовательном излучении определяется допустимым временем измерения местоположения ЛА при движении над мерным участком исследуемой поверхности.

Причиной четвертого недостатка является наличие «мертвой» зоны РРС, величина которой определяется длительностью излучаемых в каждом луче радиоволн, а также суммарным временем перехода РРС как из режима излучения радиоволн в режим приема отраженных радиоволн в пределах одного луча, так и перехода с одного луча на другой.

Известен способ автономной навигации ЛА [3], позволяющий повысить быстродействие навигации ЛА и точность определения его местоположения при движении над мерным участком, в том числе на малых высотах полета ЛА, выбранный за прототип.

Данный способ навигации ЛА поясняют рисунки, приведенные на фиг. 1, фиг. 2 и фиг. 5а-фиг. 5 г. Реализация способа [3] заключается в определении наклонных дальностей ЛА до земной поверхности по нескольким лучам, в каждом из которых излучают и принимают радиоволны в виде последовательности радиоимпульсов (фиг. 2), начальные фазы которых модулированы М-последовательностью (МП), ортогональной модулирующим М-последовательностям радиоволн в других лучах, при этом радиоволны излучают одновременно на общей для всех лучей частоте. Лучи радиоволн излучают и принимают, как показано на фиг. 1а, следующим образом. Луч 1 направлен вертикально вниз, перпендикулярно плоскости исследуемой поверхности (фиг. 1а, поз. 1), луч 2 располагается слева от луча 1 по направлению движения ЛА (фиг. 1а, поз. 2), а луч 3 - справа (фиг. 1а, поз. 3), причем все лучи располагают в одной вертикальной плоскости. Отраженные волны разделяют по лучам и определяют наклонные дальности корреляционным способом с использованием модулирующих М-последовательностей в качестве опорных функций (фиг. 5а - фиг. 5г) или способом согласованной фильтрации с использованием модулирующих М-последовательностей в качестве весовых коэффициентов. По данным о наклонных дальностях составляют ТКМ мерного участка и сравнивают ее с ЭКМ занесенной в бортовую аппаратуру перед движением ЛА.

Точность определения текущего местоположения ЛА может быть повышена за счет увеличения количества используемых лучей. Для малых высот полета прием отраженных волн проводится по одному широкому лучу, как показано на фиг. 16 (поз. 4), при этом излучение и прием радиоволн возможны с перекрытием по времени.

В результате способ навигации [3J позволяет получать информацию, необходимую для определения текущего местоположения ЛА и управления его движением, за время излучения и приема радиоволн по одному лучу, а не за суммарное время излучения и приема радиоволн по всем лучам, как это сделано в аналоге.

Недостатки способа [3] следующие:

- низкая помехоустойчивость;

- недостаточная скрытность работы РРС;

- не высокая разрешающая способность по дальности;

- недостаточная точность определения дальности.

Причиной первого недостатка является уязвимость РРС к воздействию прицельных помех.

Причиной второго недостатка является значительная мгновенная мощность парциальных радиоимпульсов.

Причиной третьего недостатка является отсутствие практической возможности формирования парциальных радиоимпульсов длительностью менее 1-2 наносекунд.

Причиной четвертого недостатка является наличие боковых лепестков взаимно-корреляционных функций модулирующих МП, величина которых ограничивает количество используемых лучей РРС.

Техническим результатом предлагаемого изобретения является повышение скрытности, помехоустойчивости и разрешающей способности по дальности, а также точности определения наклонных дальностей в радиолокационных рельефометрических системах маловысотных летательных аппаратов.

Технический результат достигается тем, что в способе автономной навигации маловысотных летательных аппаратов, включающем определение наклонных дальностей летательного аппарата до земной поверхности, заключающемся в излучении радиоволн в виде нескольких лучей и последующем приеме отраженных радиоволн по одному широкому лучу, радиоволны в каждом из лучей излучают одновременно в виде статистически независимых широкополосных шумовых сигналов, отраженные радиоволны разделяют по лучам и определяют наклонные дальности летательного аппарата до земной поверхности корреляционным способом с использованием части излучаемых по каждому лучу шумовых сигналов в качестве опорных функций.

Технический результат достигается тем, что излучаемые шумовые сигналы имеют нормальное распределение плотности вероятности и непрерывны во времени.

Способ автономной навигации маловысотных летательных аппаратов поясняют следующие рисунки.

Фигура 1. Схема расположения лучей летательного аппарата относительно мерного участка земной поверхности для 3-х лучевой рельефометрической системы при приеме отраженных волн по 3-м лучам (а) и при приеме отраженных волн по одному широкому лучу (б).

Фигура 2. Сигнал одного из лучей в виде последовательности фазоманипулированных радиоимпульсов.

Фигура 3. Широкополосный шумовой сигнал одного луча РРС - временная форма (а), спектральная форма (б).

Фигура 4. Графики автокорреляционной функции сигнала 1-ого луча (а) и взаимно-корреляционной функции сигналов 1-ого и 2-ого лучей (б).

Фигура 5. Графики модулей корреляционных функций суммарного сигнала 3-х лучей после выделения его огибающей и опорных последовательностей МП1 (а), МП2 (б), МП3 (в) и модуля корреляционной функции для луча модулированного последовательностью МП1 в окрестностях корреляционного максимума (г). Графики модулей корреляционных функций принимаемого суммарного сигнала 3-х лучей и опорных шумовых сигналов 3-х лучей (д-ж) и модуля корреляционной функции 1-ого луча в окрестностях корреляционного максимума (и).

Пример реализации способа автономной навигации маловысотных ЛА, включающий определение наклонных дальностей ЛА до земной поверхности по 3-м лучам с использованием независимых широкополосных шумовых сигналов с нормальным распределением плотности вероятности, поясняют рисунки, приведенные на фиг. 3, фиг. 4 и фиг. 5д - фиг. 5и.

Лучи радиоволн излучают, как показано на фиг. 16, следующим образом. Луч 1 направлен вертикально вниз, перпендикулярно плоскости исследуемой поверхности (фиг. 1б, поз. 1), луч 2 располагается слева от луча 1 по направлению движения ЛА (фиг. 1б, поз. 2), а луч 3 - справа (фиг. 1б, поз. 3), причем все лучи располагают в одной вертикальной плоскости. Луч 4, по которому осуществляется прием отраженных сигналов, также лежит в плоскости лучей 1-3 и имеет площадь на подстилающей поверхности, перекрывающую засветки этих трех лучей (фиг. 1б, поз. 4).

Во всех лучах радиоволны излучают одновременно в одной полосе частот в виде статистически независимых широкополосных шумовых сигналов (фиг. 3). Корреляционные функции используемых шумовых сигналов лучей с нормальным распределением плотности вероятности показаны на фиг. 4. Как видно на графиках фиг. 4, автокорреляционные функции шумовых сигналов имеют единственный максимум (фиг. 4а), их взаимно-корреляционные функции (фиг. 4б) не имеют корреляционных максимумов. Таким образом, из суммарного отраженного сигнала сигналы лучей могут быть разделены и идентифицированы корреляционным способом с использованием части излучаемых по каждому лучу шумовых сигналов в качестве опорных функций, как показано на фиг. 5д - фиг. 5и. Наклонные дальности летательного аппарата до земной поверхности определяются исходя из положения пиков корреляционных функций относительно оси задержек опорных сигналов (г) на выходах каждого из каналов, соответствующих 3-м лучам.

Анализ графиков фиг. 5 показывает, что использование сигналов лучей РРС в виде статистически независимого широкополосного шума позволяет получить на выходе корреляторов корреляционные функции с меньшими уровнями боковых лепестков, что позволяет повысить точность определения наклонных дальностей ЛА. Более узкие пики данных корреляционных функций дают возможность повышения разрешающей способности по дальности РРС.

Одновременное излучение в каждом луче радиоволн в виде широкополосного нормального шума и их прием по одному широкому лучу позволяют, по сравнению с прототипом:

- повысить скрытность работы навигационной системы за счет использования шумовых сигналов, обладающих малой спектральной плотностью излучаемой мощности и имеющих случайный характер, за счет чего оказываются практически скрыты в естественных шумах;

- обеспечить лучшую помехоустойчивость, особенно к узкополосным помехам;

- обеспечить лучшую разрешающую способность по дальности РРС за счет расширения полосы частот в спектре излучаемых сигналов;

- обеспечить повышенную точность определения местоположения ЛА за счет лучших корреляционных свойств используемых сигналов, позволяющих получись взаимно-корреляционные функции принимаемого суммарного сигнала 3-х лучей и опорных шумовых сигналов 3-х лучей с минимальными боковыми лепестками.

Таким образом, способ автономной навигации маловысотных летательных аппаратов обладает рядом существенных преимуществ перед прототипом и аналогом.

Литература

1. Ржевкин, В.А. Автономная навигация по картам местности / В.А. Ржевкин // Зарубежная радиоэлектроника. - 1981. - №10. - С. 3-28.

2. Патент 2284544 РФ, МПК G01S 5/02 (2006.01) G01C 21/20 (2006.01). Способ навигации летательных аппаратов / Хрусталев А.А., Кольцов Ю. В., Рындык А.Г., Плужников А.Д., Потапов Н.Н., Егоров С.Н.; заявители и патентообладатели Госкорпорация «Росатом», ФГУП «ФНПЦ НИИ-ИС им. Ю.Е. Седакова». - №2005116497/09; заявлено 30.05.05; опубликовано 27.09.06, Бюл. №27.

3. Патент 2598000 РФ, МПК G01S 13/91 (2006.01). Способ автономной навигации летательных аппаратов / Кашин А.В., Хрусталев А.А., Кунилов А.Л., Ивойлова М.М.; заявители и патентообладатели Госкорпорация «Росатом», ФГУП «ФНПЦ НИИИС им. Ю.Е. Седакова». - 2015154920/07; заявлено 21.12.15; опубликовано 20.09.16, Бюл. №26.

1. Способ автономной навигации маловысотных летательных аппаратов, включающий определение наклонных дальностей летательного аппарата до земной поверхности, заключающийся в излучении радиоволн в виде нескольких лучей и последующем приеме отраженных радиоволн по одному широкому лучу, отличающийся тем, что радиоволны в каждом из лучей излучают одновременно в виде статистически независимых широкополосных шумовых сигналов, отраженные радиоволны разделяют по лучам и определяют наклонные дальности летательного аппарата до земной поверхности корреляционным способом с использованием части излучаемых по каждому лучу шумовых сигналов в качестве опорных функций.

2. Способ по п. 1, отличающийся тем, что излучаемые шумовые сигналы могут иметь нормальное распределение плотности вероятности и быть непрерывны во времени.



 

Похожие патенты:

Группа изобретений относится к системам обеспечения посадки вертолета. В первом варианте система посадки содержит ультразвуковой высотомер, приемник, блок обработки информации и управления, средство отображения, четыре акустических приемника, блок обработки данных, передатчик.

Изобретение относится к области навигации летательных аппаратов (ЛА), предназначено для обеспечения безопасности полетов ЛА путем использования системы автоматического зависимого наблюдения (АЗН) на борту ЛА.

Группа изобретений относится к способу и устройству для определения координат самолета при посадке на авианосец. При посадке самолета сканируют тремя лазерными пучками нескольких полос отражателей, ориентированных относительно взлетно-посадочной полосы, принимают отраженные сигналы, вычисляют координаты самолета путем обработки принятых сигналов определенным образом.

Изобретение относится к области радионавигации в условиях отсутствия визуальной видимости взлетно-посадочной полосы (ВПП) и в сложных метеорологических условиях и может быть использовано для определения положения средней линии ВПП с помощью бортовой радиолокационной станции (РЛС), без использования наземного оборудования.

Изобретение относится к способу управления движением объекта с помощью оптической навигационной системы. Для управления движением объекта устанавливают в зоне движения объекта навигационные маяки на основе пассивной конструкции уголковых отражателей двух размеров, большего и меньшего, производят поиск сигналов от навигационных маяков, определяют положение объекта в пространстве, формируют сигналы управления для следования объекта по заданной траектории.

Изобретение относится к способу определения посадочных траекторий летательных аппаратов (ЛА) в ограниченной области пространства. Для определения посадочной траектории на заданную взлетно-посадочную полосу (ВПП) вычисляют в определенные моменты времени на основании регистрируемых пространственных координат ЛА многомерные пространственные посадочные траектории движения ЛА, выравнивают во времени при необходимости, формируют выборку зарегистрированных траекторий определенным образом, выделяют в сформированной выборке асимптотически сходящийся пучок многомерных пространственных посадочных траекторий ЛА, удаляют траектории выделенного пучка из сформированной выборки, используют выделенные пучки траекторий, соответствующие посадкам ЛА на заданные ВПП, для посадки ЛА.

Группа изобретений относится к способу и устройству сигнализации приводнения и взлета с водной поверхности самолета-амфибии. Для сигнализации приводнения и взлета самолета-амфибии измеряют уровень вибрации и уровень гидростатического давления на корпус лодки самолета-амфибии, сравнивают измеренные величины с пороговыми значениями, контролируют выпуск шасси, принимают решение о приводнении при превышении значений пороговых уровней, а также при условии, что выпуск шасси не был произведен, в противном случае принимают решение о нахождении самолета-амфибии в воздушной среде.

Изобретение относится к авиации, в частности к многопозиционным системам посадки воздушных судов (ВС) в условиях сложного рельефа местности. Достигаемый технический результат - повышение надежности безопасного вывода ВС на посадку.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ).

Способ посадки летательного аппарата, при котором используется штатные приводные радиолокационные и навигационные системы, а также лазерная система автоматического управления посадкой, содержащая два полусферических, сферический, четыре цилиндрических датчика лазерного излучения, контроллер лазерной системы, лазерный излучатель, включающий лазер и два электромеханических преобразователя, объединенные в двухкоординатный модуль поворота мощного лазера.

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера.

Изобретение относится к области активной радиолокации и может быть использовано при проектировании и создании цифровых широкополосных речных, морских и охранных радиолокационных систем.

Изобретение относится к области радиотехники и может применяться в системах трехкоординатной полуактивной радиолокации с использованием, в качестве сигналов подсвета, излучений радиоэлектронных систем различного назначения, в частности сигналов цифрового телевизионного вещания стандарта DVB-T2, для определения координат, скоростей и траекторий перемещающихся в пространстве воздушных объектов (ВО), в том числе маловысотных.

Изобретение относится к антенной технике и предназначено для использования в качестве приемо-передающей антенны мобильных и стационарных устройств спутниковой связи.

Изобретение относится к области радиотехники, навигации и может быть использовано для определения трехмерных координат летательного аппарата дальномерным методом при расположении станций с известными координатами на равнинной местности.

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера.

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на подвижных объектах. Достигаемый технический результат – решение целевых задач и получение координатной информации для осуществления траекторного взаимодействия при групповых действиях самолетов.

Изобретение относится к области определения координат летательных аппаратов и может быть использовано в военной технике. Достигаемый технический результат - определение координат летательных аппаратов при производстве внешнетраекторных измерений дальномерно-пеленгационным способом с двух измерительных пунктов по азимуту, углу места и дальности и оценка его точности.

Изобретение относится к радиолокации, а именно к предназначенным для картографирования радиолокационным системам (РЛС) с использованием антенных решеток и может использоваться, например, в авиации для оснащения как пилотируемых, так и беспилотных летательных аппаратов.
Наверх