Способ экстракционного концентрирования и очистки плутония

Изобретение относится к радиохимической технологии и может быть использовано в процессе экстракционного аффинажа плутония. Способ экстракционного концентрирования и очистки плутония включает экстракцию плутония из потока питания, промывку экстракта и реэкстракцию плутония, корректировку состава реэкстракта, повторную экстракцию плутония оборотным экстрагентом из откорректированного реэкстракта, повторную реэкстракцию плутония с выводом реэкстракта из процесса в качестве продуктового потока, переработку рафината повторной экстракции на стадии извлечения плутония из потока питания и присоединение органического потока после повторной реэкстракции к промытому экстракту от первой экстракции. Первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С. Реэкстракт, содержащий плутоний (III), перед выводом из цикла обрабатывают в противотоке оборотным экстрагентом при соотношении потоков фаз О:В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции. Изобретение позволяет повысить очистку плутония от четырехвалентных актиноидов. 1 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к радиохимической переработке отработавшего ядерного топлива (ОЯТ), конкретно - к экстракционному аффинажу плутония.

Аффинажный цикл в линии плутония является необходимым переделом в процессе переработки ОЯТ, выполняя задачи доочистки и концентрирования плутония перед оксалатным осаждением. Простейшая структура аффинажного цикла включает операции экстракции, промывки экстракта и реэкстракции плутония, при этом степень концентрирования плутония определяется отношением величин потока питания и реэкстрагирующего раствора. Такая структура принята для заводов UP-3 и Thorp (см., например, Ревенко Ю.А., Подойницын С.В., Колупаев Д.Н. Радиохимические технологии для регенерации делящихся материалов из отработавшего ядерного топлива. Изд-во Томского политехнического университета, стр. 160-170, 2014 г.). Степень концентрирования в таких схемах, как правило, невысока.

Существенно выше степень концентрирования в экстракционных циклах, работающих в режиме рефлакс-процесса (Землянухин В.И., Ильенко Е.И., Кондратьев А.Н., Лазарев Л.Н., Царенко А.Ф., Царицына Л.Г. Радиохимическая переработка ядерного топлива АЭС. М., Энергоатомиздат, стр. 110, 1983 г.). Главный отличительный признак рефлакс-процесса - деление реэкстракта плутония на поток, выводимый из цикла, и на поток, возвращаемый (рефлаксируемый) в экстракционный цикл. Возврат производится после корректировки состава (проточной или в отдельном аппарате), позволяющей проводить экстракцию из возвратного потока, а ступень ввода возвратного потока выбирается исходя из конкретной структуры цикла в зоне экстракции или в зоне промывки.

В рефлакс-процессе степень концентрирования определяется соотношением величин потока и выводимой из цикла доли потока реэкстракта, что существенно выше, чем в безрефлаксном процессе.

Недостаток рефлакс-процесса - протяженная зона накопления плутония в экстракционном каскаде. Это большой объем незавершенного производства, что нежелательно для делящегося материала. Кроме того, при отклонении режима работы каскада от регламентного зона накопленного плутония будет смещаться либо в рафинат, либо в блок регенерации экстрагента, что недопустимо.

Наиболее близким является способ экстракционного противоточного концентрирования элементов (Авт. свид. СССР №1588428, опубл. 30.08.1990 г., бюл. №32), согласно которому экстракционный цикл состоит из двух субциклов (извлекающего и концентрирующего), обслуживаемых единым потоком оборотного экстрагента. Способ включает экстракцию выделяемого элемента, промывку экстракта, реэкстракцию, корректировку состава реэкстракта и повторную экстракцию, промывку и реэкстракцию, при этом оборотный экстрагент разделяют на два потока, больший по величине поток направляют на экстракцию концентрируемого элемента из потока питания, реэкстракт, получаемый при последующей обработке этого раствора, направляют на корректировку состава и последующую повторную экстракцию меньшим по величине потоком оборотного экстрагента. Затем реэкстрагируют концентрируемый элемент из малого потока (реэкстракт является продуктовым потоком процесса), после чего меньший поток объединяют с основным потоком экстракта

Перечисленные особенности способа - последовательный перенос продукта в уменьшающиеся по величине потоки, двойной перенос в фазу экстрагента с последующей реэкстракций, отсутствие зон накопления продукта, нечувствительность к колебаниям величин потоков - обеспечивают показатели по концентрированию и очистке, недостижимые в иных экстракционных процессах. При переработке технециевого продукта с содержанием технеция-99 1,25 мг/л получен реэкстракт с содержанием технеция 3,12 г/л и количественной очисткой от стабильных и радиоактивных примесей. При переработке уранового раствора, содержащего 1,3 г/л урана и макроколичества кальция, магния и железа, получен реэкстракт, 130 г/л урана, в котором Са, Mg и Fe не обнаружены.

Анализ возможностей прототипа для решения задачи концентрирования и очистки плутония показал, что способ-прототип, решая задачу концентрирования, не может обеспечить эффективную очистку плутония от четырехвалентных актиноидов, в частности, от радиогенного тория-228.

При реэкстракции (как в извлекающем, так и в концентрирующем субцикле) с применением комплексообразователей 228Th будет полностью реэкстрагироваться совместно с плутонием. При восстановительной реэкстракции, проводимой в слабокислой среде, 228Th также будет сопровождать плутоний из-за слабой экстрагируемости тория при невысоком содержании азотной кислоты в водной фазе.

Задача: разработка технологичного способа безнакопительного концентрирования и очистки плутония, обеспечивающего эффективную очистку от четырехвалентных актиноидов.

Техническим результатом предлагаемого изобретения является повышение очистки плутония от четырехвалентных актиноидов, в частности, от тория-228.

Указанный технический результат достигается в способе экстракционного концентрирования и очистки плутония, включающем экстракцию выделяемого элемента, промывку экстракта и реэкстракцию, корректировку состава реэкстракта, повторную экстракцию оборотным экстрагентом, промывку полученного экстракта и повторную реэкстракцию с выводом реэкстракта из процесса, объединение органического потока после повторной реэкстракции с промытым экстрактом от первой экстракции, причем первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С, а выводимый из процесса реэкстракт, содержащий плутоний (III), перед выводом из цикла обрабатывают в противотоке оборотным экстрагентом при отношении потоков органической (О) и водной (В) фаз О:В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции плутония.

В частном случае в качестве экстрагента используют раствор трибутилфосфата в ароматическом углеводороде, преимущественно, 30% об. трибутилфосфата в триэтилбензоле.

При проведении экстракционного концентрирования и очистки плутония по предлагаемому способу устраняются отмеченные выше недостатки способа-прототипа:

- проведение экстракции плутония из потока питания и промывки экстракта в указанном температурном интервале повышает экстрагируемость плутония (IV) и снижает экстрагируемость тория, что обеспечивает сброс основного количества тория в рафинат;

- отмывка продуктового потока, содержащего плутоний (III), оборотным экстрагентом при повышенном расходе органического потока удаляет остатки тория из продуктового потока.

На фиг. представлена схема экстракционного цикла (блок регенерации экстрагента опущен). Способ, в соответствии с представленной схемой, осуществляется следующим образом.

Исходный раствор (поток питания) 46 поступает в ступень 8 блока 60, состоящего из ступеней 1-16. На этом блоке производится экстракция плутония и промывка экстракта, входные потоки блока подогреваются до 45°С. Рафинат первой экстракции 57 блока 60 выводится из процесса. Промытый экстракт из ступени 16 поступает на блок 61, состоящий из ступеней 17-28, где производится восстановительная реэкстракция плутония. Реэкстрагенты 51 и 52 поступают различными потоками в ступени 22 и 28 соответственно. Выходящий из ступени 17 первый реэкстракт 53 поступает на корректировку состава, включающую его подкисление, разрушение избытка восстановителя и окисление Pu (III) до Pu (IV). Эта операция выполняется в колонне каталитического окисления, обозначенной в сквозной нумерации ступеней номером 29.

Откорректированный по составу и степени окисления плутония первый реэкстракт 53 поступает в ступень 34 блока 62, состоящего из ступеней 30-39 для повторной экстракции. Рафинат 56 повторной экстракции блока 62 направляется в зону экстракции блока 60 (ступень 5), экстракт после промывки на ступенях 35-39 поступает на ступень 42 блока 63, состоящего из ступеней 40-45, где на ступенях 42-45 производится повторная восстановительная реэкстракция плутония. Второй реэкстракт 59 дополнительно отмывается от тория оборотным экстрагентом 49 на ступенях 40 и 41 блока 63. Выходящий из ступени 45 органический поток присоединяется к потоку, поступающему на ступень 17 на первую реэкстракцию. Реэкстрагентом для первой (потоки 51 и 52) и повторной (поток 58) реэкстракции выбран карбогидразид, быстро и полно восстанавливающий Pu (IV) до Pu (III).

Пример 1. Было проведено математическое моделирование процесса с представленной структурой экстракционного цикла, результаты которого сведены в таблицу 1.

*) ТБФ - трибутилфосфат, КГ - карбогидразид, ДТПА - диэтилентриаминпентауксусная кислота

Как следует из данных таблицы 1, степень концентрирования плутония (отношение концентрации плутония в потоке 59 к концентрации в потоке 46) составляет 14, коэффициент очистки от тория - 3⋅104.

Для сопоставления было проведено математическое моделирование процесса по способу-прототипу, т.е. без подогрева входных потоков блока 60, без подключения потока оборотного экстрагента 49 и с передачей органического потока из ступени 39 в ступень 40. Остальные потоки по величине и составу были идентичными представленным в таблице 1. В результате был получен второй реэкстракт следующего состава: HNO3 - 32 г/л, Pu - 70,82 г/л и Th - 11,8 мг/л. Таким образом, при проведении процесса по способу-прототипу сохраняется степень концентрирования, однако коэффициент очистки плутония от тория составляет всего 12, что ниже достигаемого в предлагаемом способе в несколько тысяч раз (2,75⋅103).

Результат, полученный при проведении математического моделирования, не исчерпывает возможности предлагаемого способа по концентрированию плутония и определяется только принятой для расчетов экстракционной системой, 30% ТБФ в н-парафинах. В этой системе при содержании плутония 22-25 г/л (зависит от конкретного состава разбавителя) сольват плутония выделяется в собственную фазу (т.н. «третья фаза»), что недопустимо.

Однако применение ароматических разбавителей, например, триэтилбензола (ТЭБ), исключает это явление, что важно как для повышения содержания плутония в продуктовом реэкстракте, так и для повышения безопасности и устойчивости работы аффинажного цикла.

Для подтверждения возможности повышения концентрирования плутония было проведено математическое моделирование схемы, представленной на фиг., с откорректированными величинами и составами некоторых потоков.

Пример 2. Величины и составы потоков представлены в таблице 2. Из таблицы 2 видно, что в схеме уменьшены потоки оборотного экстрагента, поступающего на блоки 62 и 63, увеличена концентрация карбогидразида во втором реэкстрагенте и дополнительно в этот поток добавлен второй восстановитель - диформилгидразин (ДФГ). Поток второго реэкстрагента также уменьшен в 1,7 раза.

Как следует из состава второго реэкстракта, степень концентрирования плутония повышена до 24 при сохранении коэффициента очистки от тория, равного 3⋅104.

В таблице 3 представлены расчетные составы водной и органической фаз на каждой из ступеней аффинажного цикла.

Из данных, представленных в таблице 3, можно сделать следующие основные выводы:

- перенос плутония на блок 60 с водным потоком и на блок 61 с органическим потоком невелик, 0,2% от поступающего с потоком питания, и не влияет на работу блоков 60 и 61;

- торий в преобладающей части сбрасывается с рафинатом блока 60. Накопление тория в блоке 60 незначительно и не влияет на работу блока;

- накопление плутония в органической фазе блока 62 (ступени 34-39) было бы недопустимо при использовании парафинового разбавителя.

Таким образом, предлагаемый способ радикально превосходит способ-прототип по качеству очистки плутония от четырехвалентных актиноидов, в частности от радиогенного тория, сохраняя при этом все преимущества безрефлаксного концентрирования.

1. Способ экстракционного концентрирования и очистки плутония, включающий экстракцию выделяемого элемента, промывку экстракта и реэкстракцию, корректировку состава реэкстракта, повторную экстракцию оборотным экстрагентом, промывку полученного экстракта и повторную реэкстракцию с выводом реэкстракта из процесса, объединение органического потока после повторной реэкстракции с промытым экстрактом от первой экстракции, отличающийся тем, что первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С, а выводимый из процесса реэкстракт, содержащий плутоний(III), перед выводом из процесса обрабатывают в противотоке оборотным экстрагентом при отношении потоков органической (О) и водной (В) фаз O : В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции плутония.

2. Способ по п. 1, отличающийся тем, что в качестве экстрагента используют раствор трибутилфосфата в ароматическом углеводороде, преимущественно 30% об. трибутилфосфата в триэтиленбензоле.



 

Похожие патенты:

Изобретение относится к области утилизации плавучих объектов, содержащих радиоактивные отходы. Способ формирования упаковки для долговременного хранения радиоактивных отходов, при котором утилизируемый плавучий объект устанавливают на стапель, вырезают радиоактивный блок, производят перемещение незагрязненных носового и кормового блоков для последующей утилизации.

Группа изобретений относится к атомной энергетике. Способ обработки отработанных ионообменных смол для захоронения включает подачу смеси отработанных ионообменных смол с транспортной водой в загрузочный бак, отделение ионообменных смол от транспортной воды путем отстаивания смеси и слива транспортной воды из загрузочного бака, последующую дозированную подачу отделенных от транспортной воды ионообменных смол в сушильную камеру, вакуумную сушку с одновременным перемешиванием ионообменных смол в сушильной камере при температуре не более 90°С и выгрузку обработанной ионообменной смолы в транспортный контейнер.

Группа изобретений может быть использована в ядерной энергетике для обработки объектов, включающих элементы, омываемые натрием. Для обработки натрия, осажденного на элементах ядерного реактора, его погружают в водный раствор соли, представляющий собой раствор карбоксилата или аминокарбоксилата.

Изобретение относится к ядерной физике, в частности к способам обработки материалов с радиоактивным заражением. Способ дезактивации поверхностей твердых объектов с радиоактивными загрязнениями включает проведение входного радиационного контроля уровня загрязнений, подачу под давлением воздуха в абразивное устройство, содержащее горелку с плазмотроном, эжекционную камеру и ускоряющую трубу.

Изобретение относится к устройству для отмывки внутренней и наружной поверхностей труб от продуктов коррозии и последующей пассивации отмытых поверхностей, а также может быть использовано для дезактивации труб низкого уровня активности.

Изобретение относится к технологии дезактивации радиоактивно зараженной конструкции из сплава на основе никеля в устройстве переработки радиоактивного материала.

Изобретение относится к технологии уничтожения твердых отходов или их переработки. Способ подготовки графитовых радиоактивных отходов к захоронению включает размещение облученного графита в термической камере, проведение термической деструкции путем продувания через термическую камеру газообразной инертной среды, вывод газовых продуктов деструкции в инертную среду.
Изобретение относится к способам дезактивационной обработки облученного реакторного графита, может быть использовано при выводе из эксплуатации уран-графитовых реакторных установок и при обращении с углеродсодержащими твердыми радиоактивными отходами (ТРО) для снижения класса их радиационной опасности.

Изобретение относится к экологии и охране окружающей среды, а более конкретно к способам высокотемпературной переработки углеродсодержащих отходов. Способ переработки реакторного графита включает измельчение и высокотемпературный нагрев отходов.
Изобретение относится к области обработки ядерных отходов. Способ обработки стержня-поглотителя, содержащего оболочку, в которой находится материал на основе спеченного карбида бора, пористость которого составляет менее 1% от объема материала, причем материал имеет трещины, которые содержат натрий и, по меньшей мере, одно радиоактивное вещество, при этом способ включает в себя этап обработки, во время которого натрий преобразовывают в карбонат натрия путем реакции карбонизации в результате приведения материала в контакт с реакционной смесью для обработки, содержащей, в молярных процентах, 0,5-5% пара, 5-25% углекислого газа и 74,5-94,5% химически инертного газа, таким образом, что увеличение в объеме карбоната вызывает раскрытие трещин и оболочки, которое начинается, по меньшей мере, из одной щели, сделанной в оболочке, а также распространение эффектов указанного способа обработки внутри материала.
Наверх