Способ оценки взрыво- и пожароопасности химических источников тока

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в манометрической бомбе и измеряют зависимость изменения давления от времени. Длину заостренного металлического стержня выбирают из соотношения L/D≥1.1, а взрыво- и пожароопасность цилиндрической батареи определяют из соотношений с учётом следующих параметров: L - длина заостренного металлического стержня, м; D - диаметр цилиндрической батареи, м; Qвзр - количество теплоты, выделяемое при взрыве цилиндрической батареи, Дж; V - величина свободного объема манометрической бомбы, м3; k - показатель адиабаты газообразных продуктов горения цилиндрической батареи; p1 - величина пикового давления в манометрической бомбе в момент пробивания цилиндрической батареи заостренным металлическим стержнем, Па; p0 - начальное давление в манометрической бомбе, Па; - масса тринитротолуола, взрыв которой эквивалентен взрыву цилиндрической батареи, кг; qTHT=4.52 МДж/кг - удельная теплота взрыва тринитротолуола; Qгор - количество теплоты, выделяемое при горении содержимого цилиндрической батареи, Дж; р2 - максимальное значение давления в манометрической бомбе, Па. Изобретение позволяет осуществить количественную оценку взрыво- и пожаробезопасности химических элементов питания. 6 ил.

 

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации.

Химические источники тока (ХИТ) имеют высокую плотность энергии и, как следствие, высокую взрыво- и пожароопасность в экстремальных условиях эксплуатации [1]. Оценка взрыво- и пожароопасности ХИТ важна для минимизации разрушительного воздействия на аппаратуру и обслуживающий персонал в нештатных ситуациях.

Взрывоопасность высокоэнергетических событий оценивается энергией взрыва или тротиловым эквивалентом - мерой энерговыделения, выраженной в массе тринитротолуола (тротила), выделяющей при взрыве равное количество энергии [2]. Пожароопасность ХИТ определяется количеством теплоты, выделяемой при воспламенении и полном выгорании элементов ХИТ (электродов, электролита, корпуса и т.п.) [1, 2].

Известен способ определения взрывоопасности (бризантности) порошкообразных, гранулированных, литых, прессованных, пластичных, жидких и вязкотекучих индивидуальных взрывчатых веществ по обжатию свинцового цилиндра или медного крешера при взрыве заданной навески взрывчатого вещества [3] и способы определения взрывоопасности (фугасности) с помощью свинцовой бомбы, баллистической мортиры и маятника [4].

Известен метод расчета тротилового эквивалента взрыва газо-паровоздушной смеси по удельной теплоте сгорания [5].

Известен способ определения характеристик взрывоопасности (фугасности) боеприпаса, включающий генерацию воздушной ударной волны посредством взрыва боеприпаса и фиксацию изменения геометрических характеристик объекта-свидетеля, подвергаемого воздействию ударной волны. В качестве объекта-свидетеля используют горизонтальную площадку, содержащую слой деформируемого материала с заданными механическими характеристиками [6].

Известно устройство - манометрическая бомба - для исследования горения порохов и взрывчатых веществ [7].

Наиболее близким по технической сущности к заявляемому способу является способ определения взрыво- и пожароопасности литиевых ХИТ при повреждении корпуса прокалыванием или пробиванием острым предметом [8].

Недостатком известного решения является невозможность количественной оценки взрыво- и пожароопасности ХИТ.

Техническим результатом настоящего изобретения является количественная оценка взрыво- и пожароопасности ХИТ в виде цилиндрических батарей при пробивании корпуса острым предметом.

Технический результат изобретения достигается тем, что разработан способ оценки взрыво- и пожароопасности химических источников тока в виде цилиндрической батареи, включающий пробивание корпуса цилиндрической батареи острым предметом. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в манометрической бомбе. В манометрической бомбе измеряют зависимость давления от времени. Длину заостренного металлического стержня выбирают из соотношения L:D≥1.1, а взрыво- и пожароопасность цилиндрической батареи определяют из соотношений:

где L - длина заостренного металлического стержня, м;

D - диаметр цилиндрической батареи, м;

Qвзр - количество теплоты, выделяемое при взрыве цилиндрической батареи, Дж;

V - величина свободного объема манометрической бомбы, м3;

k - показатель адиабаты газообразных продуктов горения цилиндрической батареи;

p1 - величина пикового давления в манометрической бомбе в момент пробивания цилиндрической батареи заостренным металлическим стержнем, Па;

p0 - начальное давление в манометрической бомбе, Па;

- масса тринитротолуола, взрыв которой эквивалентен взрыву цилиндрической батареи, кг;

qTHT=4.52 МДж/кг - удельная теплота взрыва тринитротолуола;

Qгор - количество теплоты, выделяемое при горении содержимого цилиндрической батареи, Дж;

р2 - максимальное значение давления в манометрической бомбе, Па.

Сущность изобретения поясняется схемой (Фиг. 1). На Фиг. 1 представлена схема манометрической бомбы для оценки взрыво- и пожароопасности ХИТ в виде цилиндрической батареи при пробивании ее корпуса заостренным металлическим стержнем. Манометрическая бомба содержит цилиндрический корпус 1 диаметром 120 мм, крышку 2, кольцевую гайку 3 и уплотнитель 4. По оси крышки установлено пиротехническое устройство, которое состоит из втулки 5, переходника 6 и пробки 7. Втулка 5 имеет центральный канал диаметром 5 мм, в котором размещают заостренный металлический стержень 8 диаметром 4.5 мм и длиной 50 мм (диаметр цилиндрической батареи не более 35 мм). В переходнике 6 устанавливают электрический капсюль-воспламенитель 9, а в полости 10 размещают навеску пороха 18 массой 0.1 г. В пробке 7 по оси установлен электрод 11 в изоляторе 12. На боковой поверхности корпуса 1 установлен датчик давления 13 и узел выпуска газа 14 с шаровым клапаном 15. Цилиндрическую батарею 16 закрепляют на текстолитовой подложке 17 и устанавливают напротив пиротехнического устройства.

Вид типичной кривой изменения давления при пробитии цилиндрической батареи показан на Фиг. 4. Взрыву цилиндрической батареи соответствует пиковое значение давления p1 в момент времени пробития корпуса t1. Последующий рост давления до значения р2 связан с горением содержимого цилиндрической батареи. Затем, по мере остывания газов, давление в манометрической бомбе уменьшается.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Использование заостренного металлического стержня диаметром 4÷5 мм при пробивании корпуса цилиндрической батареи вызывает внутреннее короткое замыкание, обеспечивая максимальное выделение энергии. При диаметре заостренного металлического стержня менее 4 мм инерции стержня может не хватить для пробития цилиндрической батареи, либо он может расплавиться под действием больших токов, вызванных коротким замыканием. При диаметре заостренного металлического стержня более 5 мм потребуется большое усилие для пробивания корпуса цилиндрической батареи, особенно при наличии корпуса из нержавеющей стали.

2. Использование заостренного металлического стержня с отношением его длины L к диаметру цилиндрической батареи D в соотношении L/D≥1.1 обеспечивает полное пробивание корпуса батареи с замыканием всех обкладок и выделением максимального количества энергии.

3. При пробивании корпуса цилиндрической батареи заостренным металлическим стержнем в момент времени t1 происходит взрыв, сопровождающийся практически мгновенным повышением давления от начального значения p0=0.1 МПа до пикового давления взрыва p1 (Фиг. 4).

Теплота, выделяемая при взрыве ХИТ в манометрической бомбе постоянного объема при отсутствии тепловых потерь через стенки манометрической бомбы, расходуется только на повышение внутренней энергии газа:

где Qвзр - количество теплоты, выделяемое при взрыве ХИТ, Дж;

ΔU - изменение внутренней энергии газа, Дж;

U1, U0 - конечное и начальное значения внутренней энергии газа, Дж.

Внутренняя энергия газа определяется формулой [9]:

где ρ - плотность газа, кг/м3;

CV - удельная теплоемкость газа при постоянном объеме, Дж/(кг⋅К);

Т - температура газа, К.

Из уравнения состояния Менделеева-Клапейрона [9] следует:

где p - давление газа, Па;

R - газовая постоянная, Дж/(кг⋅К).

Подставляя (6) в (5), с учетом уравнения Майера R=CP-CV [9], для внутренней энергии газа получим выражение:

где СР - удельная теплоемкость газа при постоянном давлении, Дж/(кг⋅К).

Продукты горения ХИТ представляют собой смесь преимущественно двухатомных газов, для которых значение показателя адиабаты k=1.4 [9].

Тогда выражение (4) с учетом (7) примет вид:

Формула (8) позволяет рассчитать энергию взрыва ХИТ по измеренному значению пикового давления взрыва p1. Для оценки взрывоопасности ХИТ удобно использовать массу тринитротолуола (тротила) , при взрыве которой выделяется энергия взрыва ХИТ Qвзр. Расчет проводится по формуле:

где qтнт=4.52 МДж/кг - удельная энергия взрыва тротила [2].

4. При воспламенении и горении ХИТ давление в манометрической бомбе повышается от значения p1 (в момент взрыва t1) (Фиг. 4), до максимального давления р2 (достигаемого в момент времени t2). Полагая, что тепло, выделяемое при горении ХИТ в манометрической бомбе постоянного объема при отсутствии тепловых потерь, расходуется только на повышение внутренней энергии газа, по аналогии с тепловыделением при взрыве ХИТ получим выражение (3):

где Qгор - количество теплоты, выделяемое при горении содержимого ХИТ.

Пример реализации

Для оценки взрыво- и пожароопасности ХИТ в виде цилиндрической батареи была изготовлена манометрическая бомба со свободным объемом V=0.002 м3 (Фиг. 1, 2).

Реализация способа осуществляется следующим образом.

При подаче электрического импульса на электрод 11 (Фиг. 1) срабатывает электрический капсюль-воспламенитель 9 и воспламеняется навеска пороха 18. Образующиеся газы выталкивают заостренный металлический стержень 8 из канала втулки 5. При срабатывании пиротехнического устройства давление в бомбе поднимается менее чем на 0.01 МПа. Заостренный металлический стержень 8 пробивает батарею 16 и упирается в подложку 17. При пробивании батареи 16, заостренный металлический стержень 8 замыкает внутренние обкладки батареи и вызывает короткое замыкание, сопровождающееся мощным электрическим разрядом. При этом развивается высокая температура и происходит выброс паров электролита батареи 16 (взрыв батареи), ее разрушение и последующее горение. Этот процесс сопровождается изменением давления в манометрической бомбе, которое фиксируется датчиком давления 13. По кривой изменения давления в манометрической бомбе определяются давления p1, р2 и по формулам (1) и (2) рассчитывается энергия взрыва ХИТ и ее тротиловый эквивалент, а по (3) - энергия, выделившаяся при горении. После измерений газы удаляются из бомбы при помощи узла выпуска газа 14.

На Фиг. 3 показан вид цилиндрической батареи до и после испытаний.

На Фиг. 4 показано изменение давления в манометрической бомбе при пробивании заостренным металлическим стерженем батареи модели Minamoto ER34615M напряжением 3.6 В. Диаметр батареи 34 мм, высота 61.5 мм, масса 109 г. На Фиг. 4 время начала процесса t1=0.23 с, время достижения максимального давления t2=0.92 с, пиковое значение давления p1=0.415 МПа, максимальное значение давления р2=4.322 МПа (начальное давление p0=0.1 МПа).

Количество теплоты, выделяемое при взрыве батареи:

масса тринитротолуола, взрыв которой эквивалентен взрыву батареи:

т.е. взрыв батареи модели Minamoto ER34615M соответствует взрыву 0.35 г тринитротолуола.

Величина тепловыделения при горении батареи:

На Фиг. 5 показано изменение давления в манометрической бомбе при пробивании батареи модели CSC93DD напряжением 3.9 В. Диаметр батареи 33.5 мм, высота 111.5 мм, масса 216 г. На Фиг. 5 время начала процесса t1=0.09 с, время достижения максимального давления t2=1.16 с, пиковое значение давления p1=5.28 МПа, максимальное значение давления р2=10.2 МПа (начальное давление р0=0.1 МПа).

Количество теплоты, выделяемое при взрыве батареи:

масса тринитротолуола, взрыв которой эквивалентен взрыву батареи:

т.е. взрыв батареи модели CSC93DD соответствует взрыву 5.73 г тринитротолуола.

Величина тепловыделения при последующем горении батареи:

Приведенный пример доказывает, что при реализации предлагаемого способа оценки взрыво- и пожароопасности ХИТ достигается положительный эффект, заключающийся в следующем.

1. Способ позволяет оценить взрывоопасность ХИТ при пробивании острым предметом (внутреннем коротком замыкании), определяя энергию взрыва и массу тринитротолуола, взрыв которой эквивалентен взрыву батареи.

2. Способ позволяет оценить пожароопасность ХИТ, определяя количество теплоты, которое выделяется при горении ХИТ.

ЛИТЕРАТУРА

1. Нижниковский, Е.А. Современные электрохимические источники тока. М.: Изд-во Радиотехника, 2015. 288 с. Бесчастнов М.В. Промышленные взрывы. Оценка и предупреждение. М.: Химия, 1991. 432 с.

2. Бесчастнов М.В. Промышленные взрывы. Оценка и предупреждение. М.: Химия, 1991. 432 с.

3. ГОСТ 5984-80 Вещества взрывчатые. Методы определения бризантности. - М.: Издательство стандартов, 1984.

4. ГОСТ 4546-81 Вещества взрывчатые. Методы определения фугасности. - М.: ИПК Издательство стандартов, 1998.

5. Расчет процессов горения и взрыва: учебное пособие / В.А. Портола, Н.Ю. Луговцева, Е.С. Торосян. - Томск: Изд-во Томского политехнического университета, 2012. - 108 с.

6. Патент РФ №2595033, МПК F42B 35/00, G01N 33/22. Способ определения характеристик фугасности боеприпаса / Сидоров И.М., Карасев С.В., Колтунов В.В., Заборовский А.Д., Ватутин Н.М. - Опубл. 20.08.2016.

7. Похил П.Ф., Мальцев В.М., Зайцев В.М. Методы исследования процессов горения и детонации. М.: Наука, 1969. - 301 с.

8. Нижниковский Е.А. Обеспечение взрывобезопасности литиевых химических источников тока. // Электрохимическая энергетика. 2001. Т. 1, №3. С. 39-44.

9. Вукалович М.П., Новиков И.И. Техническая термодинамика. М.: Энергия, 1968. - 496 с.

Способ оценки взрыво- и пожароопасности химических источников тока в виде цилиндрической батареи, включающий пробивание корпуса цилиндрической батареи острым предметом, отличающийся тем, что пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в манометрической бомбе, измеряют зависимость давления от времени в манометрической бомбе, при этом, длину заостренного металлического стержня выбирают из соотношения

L/D≥1.1,

а взрыво- и пожароопасность цилиндрической батареи определяют из соотношений

где L - длина заостренного металлического стержня, м;

D - диаметр цилиндрической батареи, м;

Qвзp - количество теплоты, выделяемое при взрыве цилиндрической батареи, Дж;

V - величина свободного объема манометрической бомбы, м3;

k - показатель адиабаты газообразных продуктов горения цилиндрической батареи;

р1 - величина пикового давления в манометрической бомбе в момент пробивания цилиндрической батареи заостренным металлическим стержнем, Па;

p0 - начальное давление в манометрической бомбе, Па;

mTHT - масса тринитротолуола, взрыв которой эквивалентен взрыву цилиндрической батареи, кг;

qТНТ=4.52 МДж/кг - удельная теплота взрыва тринитротолуола;

Qгop - количество теплоты, выделяемое при горении содержимого цилиндрической батареи, Дж;

р2 - максимальное значение давления в манометрической бомбе, Па.



 

Похожие патенты:

Изобретение может быть использовано в производстве анодов для литий-ионных аккумуляторов. Способ приготовления литийсодержащих частиц, подходящих для использования в электроде аккумулятора, включает формирование смеси, содержащей частицы прекурсора диоксида титана и водный раствор соединения лития.

Изобретение относится к ионному проводнику и к способу его изготовления. Ионный проводник содержит литий (Li), борогидрид (ВН4-), фосфор (Р) и серу (S), причем при дифракции рентгеновских лучей (CuKa: λ=1,5405 ) ионный проводник имеет дифракционные максимумы по меньшей мере при углах 2θ=14,4±1,0 градуса, 15,0±1,0 градуса, 24,9±1,0 градуса, 29,2±1,5 градуса, 30,3±1,5 градуса, 51,1±2,5 градуса и 53,5±2,5 градуса.

Изобретение относится к области электротехники, а именно к электрическому аккумулятору (20) как вторичному аккумуляторному устройству (22), имеющему анод (28), содержащий алюминий и индий, и катод (38), который включает электроактивный слой (42) с решеткой основы (44), имеющей активную проводящую систему.

Изобретение относится к полностью твердотельной вторичной литий-ионной батарее. Согласно изобретению полностью твердотельная вторичная литий-ионная батарея состоит из анода, который содержит частицы активного материала, электропроводного материала и твердого электролита, где частицы активного материала анода содержат как минимум один активный материал, выбранный из группы, состоящей из элементарного кремния и SiO, и где для частиц активного материала анода значение А, полученное по нижеследующей формуле (1), равно 6,1 или более и 54,8 или менее: Формула (1) А = SBET × dmed × D, где SBET - удельная площадь поверхности частиц активного материала анода, определенная по методу БЭТ (м2/г); dmed - средний диаметр D50 (мкм) частиц активного материала анода; и D - плотность (г/см3) частиц активного материала анода.

Изобретение относится к ионопроводящему оксиду со структурой типа граната и способу получения спеченного тела оксидного электролита. Ионопроводящий оксид со структурой граната, представленный общей формулой (Lix-3y-z,Ey,Hz)LαMβOγ (где E является как минимум одним элементом, выбранным из группы, состоящей из Al, Ga, Fe и Si; L является как минимум одним элементом, выбранным из щелочноземельных металлов и лантаноидов; M является как минимум одним элементом, выбранным из группы, состоящей из переходных элементов, которые являются шестикоординированными с кислородом, и типичных элементов в группах с 12 по 15 периодической таблицы; причем 3≤x-3y-z≤7; 0≤у<0,22; 0≤z≤2,8; 2,5≤α≤3,5; 1,5≤β≤2,5 и 11≤γ≤13), при этом полуширина дифракционного пика с наибольшей интенсивностью и наблюдаемого под углом дифракции (2θ) в диапазоне от 29 до 32° в результате измерения посредством рентгеновской дифракции с использованием излучения CuKα составляет 0,164° или менее.

Изобретение относится к литиевому электрическому аккумулятору (т.е. литиевому вторичному химическому источнику тока.

Изобретение относится к области электродных материалов на основе сложных фосфатов переходных металлов и лития и может быть использовано для получения катодного активного материала для литий-ионных аккумуляторов и батарей на основе такого материала.

Изобретение относится к области электротехники, а именно к сверхбыстро перезаряжаемой металл-ионной батарее с низкой воспламеняемостью, которая может быть использована в качестве источника энергии для электрических транспортных средств или портативных электронных устройств.

Изобретение относится к электротехнической промышленности и промышленной экологии, а именно к устройству для разрезания отработанных электрических батареек и аккумуляторов.

Изобретение относится к области электротехники, а именно к твердотельному аккумулятору, в котором обратимость реакции осаждения и растворения металла Li может быть повышена при одновременном предотвращении возникновения короткого замыкания.

Изобретение относится к области промышленной экологии и может быть использовано для расчета параметров теплового комфорта помещений различного назначения. Способ оценки теплового комфорта в помещениях заключается в определении параметров теплового комфорта, которые учитывают комфортные микроклиматические параметры и личностные параметры, включающие метаболизм и характеристику одежды, для этого предварительно для каждого класса помещений определяют изокомфортные микроклиматические параметры, соответствующие заданному уровню теплового комфорта, после чего рассчитывают эквивалентную комфортную температуру, затем полученные значения эквивалентной комфортной температуры аппроксимируют в виде расчетных выражений для каждого класса помещений по следующей шкале: Технический результат – повышение информативности получаемых данных за счет получения обобщающего параметра для оценки теплового комфорта в помещениях различного назначения.

Изобретение относится к ракетной технике и предназначено для исследования процессов тепломассопереноса в конструкциях ракетных двигателей твердого топлива (РДТТ).

Изобретение относится к области высоких технологий, осуществляемых на основе управляемых термодинамических процессов, и может быть использовано для получения высокоизотермичных температурных полей объектов, нагреваемых внешним источником энергии.
Изобретение относится к области тепловых измерений и может использоваться при экспериментальных исследованиях температурных и энергетических режимов химических источников тока (ХИТ).

Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца, а также структуры и свойств его поверхности дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и свойств поверхности, а также теплофизических свойств материалов различного типа с возможностью одновременного снятия базовой линии.

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в бомбовых калориметрах для определения теплоты сгорания горючих газов.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий.

Изобретение относится к области измерения температуры. Предложено устройство для измерения температуры, содержащее датчик теплового потока, который состоит из чувствительного элемента, в качестве которого, например, используются термоэлектрические преобразователи, контактирующие через образцовую теплопроводную пластину с нагревателем, которые размещены в теплоизоляционном корпусе.

Изобретение относится к теплотехнике и может быть использовано для измерения теплового потока. Устройство для измерения теплового потока теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами, содержит, по крайней мере, два теплообменника, входы которых установлены на одном уровне и соединены напорными трубопроводами с крышкой через коллектор, установленный вертикально выше уровня крышки, причем напорные трубопроводы снабжены запорными вентилями, а трубопроводы, соединяющие выходы теплообменников и нижнюю часть корпуса парогенератора, являются обратными.

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем.

Изобретение относится к средствам проведения испытаний. Стенд для отработки узлов разделения летательных аппаратов состоит из корпуса, основания, замка для крепления объекта испытаний, устройства улавливания, пульта управления.
Наверх