Пьезокерамический материал



Пьезокерамический материал
Пьезокерамический материал
Пьезокерамический материал

Владельцы патента RU 2691424:

Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "Роскосмос" (RU)

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств и работающих при сильных электрических и механических воздействиях. Материал включает оксиды свинца, кадмия, циркония, титана, марганца, стронция, лантана и дополнительно - оксиды церия, тантала и сурьмы, при следующем соотношении компонентов, мас.%: PbO 63,232÷64,152; CdO 0,098÷0,198; ZrO2 18,990÷19,234; TiO2 11,143÷11,273; SrO 0,319÷1,814; MnO2 0,131÷0,435; La2O3 0,344÷0,366; CeO2 0,184÷0,960; Ta2O5 0,691÷1,984; Sb2O3 1,653÷2,799. Технический результат заключается в получении сегнетожесткого пьезокерамического материала с плотной мелкозернистой структурой, обеспечивающей улучшенные электрофизические параметры материала: повышенную механическую добротность Qm=1452-1496, повышенную диэлектрическую проницаемость ετ330=1488-1492, повышенные коэффициенты электромеханической связи Кр=0,61-0,62; К31=0,37-0,39; К33=0,73-0,76, что позволяет повысить удельную мощность пьезопреобразователей на основе предлагаемого пьезокерамического материала. 2 табл.

 

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств и работающих при сильных электрических и механических воздействиях.

Одним из важнейших показателей качества этого класса пьезокерамических материалов является максимальная удельная мощность пьезопреобразователей на их основе Pij, которая пропорциональна комплексному параметру [Сыркин Л.Н. "Новые пьезоактивные материалы и их применение в ультразвуковой технике", Л., 1979, стр. 44]:

Pij ~ K2ij⋅Qm⋅εт330,

где Kij - коэффициенты электромеханической связи К31 и К33 поперечных и продольных мод колебаний;

Qm - механическая добротность;

εт330 - относительная диэлектрическая проницаемость.

Эти сегнетожесткие пьезокерамические материалы отличаются малыми диэлектрическими потерями tgδ в слабых и сильных полях, высокой механической добротностью и относительно высокими коэффициентами электромеханической связи. К таким материалам системы цирконата-титана свинца (ЦТС) относятся: АРС-841 (США) [Каталог фирмы «АРС International Ltd», США], PIC 241 (США) [Каталог фирмы "PI Ceramic"], отечественные пьезокерамические материалы ЦТС-23, ЦТС-24 [Материалы пьезокерамические. Технические условия (отраслевой стандарт) ОСТ 110444 - 87, М., 1987, стр. 16, 17] и др.

В таблице 1 приведены основные электрофизические параметры известных сегнетожестких пьезокерамических материалов. Как следует из данных таблицы 1, все материалы данного типа имеют близкие значения:

- пьезомодулей d31 и d33,

- коэффициентов электромеханической связи;

но существенно отличаются по величине:

- относительной диэлектрической проницаемости,

- механической добротности,

- тангенса угла диэлектрических потерь,

- удельной мощности излучения пьезопреобразователей.

Недостатками большинства сегнетожестких пьезокерамических материалов этого типа являются низкие значения пьезоэлектрических параметров: механической добротности, коэффициентов электромеханической связи и относительной диэлектрической проницаемости, что снижает удельную мощность пьезопреобразователей на их основе, обусловленной потерями энергии в пьезокерамическом материале.

Известен также пьезокерамический материал, включающий оксиды свинца (PbO), кадмия (CdO), циркония (ZrO2), титана (TiO2), вольфрама (WO3), кобальта (СоО), германия (GeO2) и бора (B2O3) [Патент РФ №2152371 МПК С04В 35/491, опубл. 10.07.2000 г.]. Недостатком этого сегнетожесткого материала также являются низкие значения пьезоэлектрических параметров: механической добротности Qm=400-450, коэффициентов электромеханической связи Кр=0,58-0,59; К31=0,33-0,34; К33=0,70-0,72 и относительной диэлектрической проницаемости εт330=900-920, что снижает удельную мощность пьезопреобразователей на их основе, обусловленной потерями энергии в пьезокерамическом материале.

Наиболее близким к заявляемому сегнетожесткому пьезокерамическому материалу по химической композиции и назначению является принимаемый за прототип пьезокерамический материал, включающий оксиды свинца (PbO), кадмия (CdO), циркония (ZrO2), титана (TiO2), марганца (MnO2), стронция (SrO), цинка (ZnO), лантана (La2O3), висмута (Bi2O3) и железа (Fe2O3) при следующем соотношении компонентов, мас. % [Патент РФ №2357942 МПК С04В 35/491, H01L 41/187 опубл. 10.06.2009 г.]:

PbO 63,233÷65,404;
CdO 0,099÷0,490;
ZrO2 18,990÷19,539;
TiO2 11,141÷11,471;
MnO2 0,131÷0,532;
SrO 1,318÷2,226;
ZnO 0,248÷0,995;
La2O3 0,643÷0,768;
Bi2O3 0,470÷1,900;
Fe2O3 0,099÷0,490.

Однако известный сегнетожесткий пьезокерамический материал обладает низкими значениями пьезоэлектрических параметров: коэффициентов электромеханической связи Кр=0,58-0,59; К31=0,35-0,36; К33=0,71-0,72, механической добротности Qm=900-940 и относительной диэлектрической проницаемости εт330=1400-1430, обусловленные крупнозернистой пористой структурой сегнетожесткого пьезокерамического материала, что снижает удельную мощность преобразователей.

Цель изобретения - создание сегнетожесткого пьезокерамического материала с высокими значениями электрофизических параметров: относительной диэлектрической проницаемости, механической добротности и коэффициентов электромеханической связи.

Поставленная цель достигается тем, что в сегнетожестком пьезокерамическом материале, включающем оксиды свинца (PbO), кадмия (CdO), циркония (ZrO2), титана (TiO2), марганца (MnO2), стронция (SrO), лантана (La2O3), дополнительно содержатся оксиды церия (CeO2), тантала (Ta2O5) и сурьмы (Sb2O3) при следующем соотношении компонентов, мас. %:

PbO 63,232÷64,152;
CdO 0,098÷0,198;
ZrO2 18,990÷19,234;
TiO2 11,143÷11,273;
MnO2 0,131÷0,435;
SrO 0,319÷1,814;
La2O3 0,344÷0,366;
CeO2 0,184÷0,960;
Ta2O5 0,691÷1,984;
Sb2O3 1,653÷2,799.

Таким образом, отличительными признаками изобретения является то, что в сегнетожесткий пьезокерамический материал дополнительно введены оксиды церия, тантала и сурьмы. Оксиды тантала и сурьмы активируют процесс спекания, повышая тем самым плотность материала, что увеличивает относительную диэлектрическую проницаемость и коэффициенты электромеханической связи. Наличие в составе оксида церия замедляет скорость рекристаллизации зерен после спекания, формируя тем самым мелкозернистую структуру в материале, что снижает потери мощности на вихревые токи и повышает механическую добротность. Совокупность признаков позволяет получить сегнетожесткий пьезокерамический материал с плотной мелкозернистой структурой, обеспечивающей высокие электрофизические параметры материала, что повышает удельную мощность пьезопреобразователей на их основе.

Изобретение поясняется таблицами 1, 2.

ПРИМЕР:

Предлагаемый пьезокерамический материал согласно формуле изготавливается по керамической технологии. Для сравнения изготавливался пьезокерамический материал по прототипу.

В качестве исходных компонентов предлагаемого сегнетжесткого пьезокерамического материала использовались оксиды: PbO - глет свинцовый марки «Г-2», CdCO3, TiO2, ZrO2, SrCO3, MnO2, La2O3, CeO2, Ta2O5, Bi2O3, Sb2O3, ZnO и Fe2O3 квалификации «хч». Смешение компонентов производилось мокрым измельчением в планетарной мельнице с шарами из оксида циркония в течение 180 минут, после сушки шихта подвергалась температурной обработке при Т=800°С в течение 2 часов, затем синтезированный материал подвергался мокрому измельчению в планетарной мельнице с шарами из оксида циркония в течение 180 минут до дисперсности Sуд=550 м2/кг на приборе ПСХ-4.

Аттестация качества синтезированного пьезокерамического материала осуществлялась на отпрессованных при давлении Руд=100 МПа на стандартных образцах в виде таблеток размером 25×3 мм. Спекание этих образцов проводили при температуре Т=1170-1200°С в течение 4 часов в засыпке, обеспечивающей атмосферу паров окиси свинца. На отшлифованные по толщине и диаметру образцы до размера 20×1 мм наносили серебросодержащую пасту, которую вжигали при температуре 820°С. Образцы поляризовали в воздушной среде при Т=290°С в постоянном электрическом поле напряженностью 3 кВ/мм. Определение электрофизических параметров проводилось в соответствии с [Материалы пьезокерамические. Технические условия. Отраслевой стандарт ОСТ 110444-87, М., 1987, стр. 16].

В таблице 2 приведены основные электрофизические характеристики предлагаемого пьезокерамического материала в зависимости от состава, полученные усреднением измерений характеристик 10 образцов с каждой партии. Полученные экспериментальные данные свидетельствуют о том, что предлагаемый сегнетожесткий пьезоэлектрический материал обладает оптимальными, с точки зрения решаемой задачи, характеристиками в интервале величин компонентов, указанных в формуле изобретения (составы №3-5 табл. 2). В сравнении с известными пьезокерамическими материалами (таблицы 1 и 2), полученный материал имеет более высокие значения пьезоэлектрических параметров: относительной диэлектрической проницаемости εт330, механической добротности Qm и коэффициентов электромеханической связи Кр, К31 и К33, что позволяет значительно повысить удельную мощность пьезопреобразователей на основе предлагаемого пьезокерамического материала.

Технический результат заключается в получении сегнетожесткого пьезокерамического материала с плотной мелкозернистой структурой, обеспечивающей улучшенные электрофизические параметры материала: повышенную механическую добротность Qm=1452-1496, повышенную диэлектрическую проницаемость εт330=1488-1492, повышенные коэффициенты электромеханической связи Кр=0,61-0,62; К31=0,37-0,39; К33=0,73-0,76.

Пьезокерамический материал, включающий оксиды свинца (PbO), кадмия (CdO), циркония (ZrO2), титана (TiO2), марганца (MnO2), стронция (SrO), лантана (La2O3), отличающийся тем, что дополнительно содержит оксиды церия (CeO2), тантала (Ta2O5) и сурьмы (Sb2O3) при следующем соотношении компонентов, мас. %:

PbO 63,232÷64,152
CdO 0,098÷0,198
ZrO2 18,990÷19,234
TiO2 11,143÷11,273
SrO 0,319÷1,814
MnO2 0,131÷0,435
La2O3 0,344÷0,366
CeO2 0,184÷0,960
Ta2O5 0,691÷1,984
Sb2O3 1,653÷2,799



 

Похожие патенты:

Изобретение относится к технологии получения пьезоэлектрического кристалла на основе лангатата с высокой стабильностью и высокими изоляционными свойствами для использования в качестве пьезоэлектрического элемента датчика давления для измерения давления при сгорании внутри камеры двигателя внутреннего сгорания.

Изобретение относится к способам сборки линейных двигателей, содержащих электромеханический материал, который изменяет свою длину под действием электрического поля.

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в вычислительной технике для создания матриц памяти запоминающих устройств.

Изобретение относится к пьезоэлектрическим актюаторам. Сущность: биморфный дисковый актюатор содержит подложку, выполненную из композитного материала и имеющую первую поверхность и вторую поверхность, первый пьезокерамический диск, жестко соединенный с первой поверхностью подложки, второй пьезокерамический диск, жестко соединенный со второй поверхностью подложки, и первое композитное кольцо, выполненное из композитного материала, жестко соединенное с первой поверхностью подложки и окружающее первый пьезокерамический диск.

Изобретение относится к получению пористых пьезокерамик для ультразвуковых преобразователей, работающих в диапазоне частот 0,1…2000 кГц. Сущность способа заключается в том, что порошок исходного синтезированного пьезокерамического материала смешивают с двухкомпонентным порообразователем, в качестве первой части которого используют порошок предварительно обожженного и размолотого того же самого исходного пьезокерамического материала, а в качестве второй части порообразователя используют выгорающий порообразователь в виде древесной муки с размером основной части частиц 10÷180 мкм.
Использование: для изготовления композиционной керамополимерной пленки. Сущность изобретения заключается в том, что способ изготовления композиционной керамополимерной пленки содержит стадии: смешивания исходных порошков керамики и полимера; гомогенизацию полученной смеси исходных порошков; ввод гомогенизированной смеси в пресс-форму в виде свободно насыпанного слоя заданной толщины; прессование упомянутого слоя под давлением заданной величины; термообработку прессованной заготовки лазерным излучением заданной мощности.

Изобретение относится к электротехнике. Технический результат состоит в расширении эксплуатационных возможностей.

Изобретение относится композиционному материалу, проявляющему пьезоэлектрические и/или пьезорезитивные свойства при деформации. Сущность: датчик деформации представляет собой однородную композиционную пену, содержащий неслоистую смесь из высокоэластичного полимерного материала с множеством пор и множество токопроводящих наполнителей, распределенных в полимерном материале.

Изобретение относится к пьезоэлектрическим устройствам для обратимого преобразования механического напряжения в электрическое. Технический результат заключается в упрощении конструкции преобразователя и увеличении его эффективности при нано или микроразмерах преобразователя.

Изобретение относится к электротехнике, химической промышленности, нанотехнологии и может быть использовано при изготовлении сенсорных и жидкокристаллических экранов, солнечных преобразователей энергии, светодиодов.

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в вычислительной технике для создания матриц памяти запоминающих устройств.

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков.

Изобретение относится к получению пористых пьезокерамик для ультразвуковых преобразователей, работающих в диапазоне частот 0,1…2000 кГц. Сущность способа заключается в том, что порошок исходного синтезированного пьезокерамического материала смешивают с двухкомпонентным порообразователем, в качестве первой части которого используют порошок предварительно обожженного и размолотого того же самого исходного пьезокерамического материала, а в качестве второй части порообразователя используют выгорающий порообразователь в виде древесной муки с размером основной части частиц 10÷180 мкм.

Изобретение относится к технологии пьезоэлектрической керамики и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков.

Изобретение относится к технологии получения пьезокерамического материала ЦТС-19, который может быть использован в качестве пьезоактивной составляющей композиционных материалов со связностями 1-3 и 3-3, используемых в приемной аппаратуре в гидроакустике и медицине.

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков, а также для устройств монолитного типа, таких как многослойные пьезоэлектрические актюаторы.

Изобретение относится к способу изготовления керамических пьезоматериалов из нано- и ультрадисперсных порошков фаз кислородно-октаэдрического типа, содержащих в позиции (В) ионы титана (IV), ниобия (V), циркония (IV), вольфрама (VI).

Изобретение относится к области производства пьезокерамических материалов, предназначенных для изготовления излучателей и приемников ультразвука, электромеханических преобразователей.
Изобретение относится к области пьезокерамических материалов, предназначенных для изготовления многослойных ультразвуковых устройств в виде слоистых гетероструктур, являющихся основой различных пьезодатчиков (давления, медицинской диагностики, эмиссионного контроля гидроакустической аппаратуры и т.д.), работающих в режиме приема.

Изобретение относится к области сегнетомягких пьезокерамических материалов широкого применения, предназначенных для изготовления ультразвуковых устройств, работающих в режиме приема, пьезодатчиков различного назначения, а также для изготовления многослойных пьезокерамических элементов: актюаторов, биморфов и др., которые находят применение для контроля и точного позиционирования технологического оборудования в микроэлектронном производстве, для стыковки и подстройки оптических волокон, при автоюстировке и подстройке лазерных зеркал интерферометров, для управления лазерным лучом в различных системах.
Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения.
Наверх