Способ формирования культуры опухолевых клеток, резистентной к протонам

Изобретение относится к онкологии и лучевой терапии и направлено на получение фундаментальных и прикладных данных по реакции опухолевых клеток рецидивов и метастазов, сформированных после ранее проведенного неэффективного курса лучевой терапии, к повторному курсу лучевой терапии протонами. Способ формирования культуры опухолевых клеток, резистентной к протонам, включает облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности, при этом культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв). Использование изобретения позволяет проводить сравнительные радиобиологические исследования, направленные на выяснение и уточнение механизмов клеточной радиорезистентности, скрининг противоопухолевых препаратов в аспекте их применения в схемах химиолучевой терапии и разработать эффективные схемы лечения пациентов с рецидивами и метастазами, возникшими после ранее проведенного неэффективного курса лучевой терапии. 3 ил.

 

Изобретение относится к онкологии и лучевой терапии и направлено на получение фундаментальных и прикладных данных по реакции опухолевых клеток рецидивов и метастазов, сформированных после ранее проведенного неэффективного курса лучевой терапии к повторному курсу лучевой терапии протонами.

Успех лучевой терапии злокачественных новообразований напрямую зависит от степени радиочувствительности опухолевых клеток. Поэтому исследования, направленные на изучение радиорезистентности опухолевых клеток, имеют решающее значение для разработки более эффективных методов лечения.

Известен способ получения резистентных клеточных линий (Jing, Z. et al. Reverse resistance to radiation in KYSE-150R esophageal carcinoma cell after epidermal growth factor receptor signal pathway inhibition by cetuximab / Z. Jing, L. Gong, C.Y. Xie, L. Zhang, H.F. Su, X. Deng, S.X. Wu // Radiotherapy and Oncology. 2009. V. 93. P. 468-473), где облучение опухолевых клеток карциномы пищевода человека проводили рентгеновским излучением, после чего обновляли питательную среду и культивировали клетки. Процедуру облучения повторяли 12 раз (1 Гр 3 раза, 2 Гр 3 раза и 4 Гр 3 раза) два раза в неделю до общих доз 21 Гр в течение 1,5 месяцев до образования радиорезистентных клеток.

Известен еще один вариант получения резистентных клеток (Xie, L. et al. Fractionated irradiation induced radio-resistant esophageal cancer EC 109 cells seem to be more sensitive to chemotherapeutic drugs / L. Xie, X. Song, J. Yu, L. Wei, B. Song, X. Wang // Journal of Experimental & Clinical Cancer Research. 2009), где клеточную линию сначала выращивали примерно до 60% монослоя, затем клетки подвергали воздействию рентгеновского излучения в дозе 10 Гр, после чего культивировали примерно до 60% монослоя и снова облучали в дозе 10 Гр. Фракционированное облучение продолжались до суммарной дозы 80 Гр. После чего была установлена радиоустойчивая клеточная сублиния.

Похожая методика описана еще в одном исследовании (Fukuda K, Sakakura С, Miyagawa K, Kuriu Y, Kin S, Nakase Y, Hagiwara A, Mitsufuji S, Okazaki Y, Hayashizaki Y, Yamagishi H. Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer. 2004 Oct 18; 91(8): 1543-50), где линии клеток рака пищевода выращивали примерно до 50% монослоя и подвергали воздействию рентгеновского излучения в дозе 2 Гр и культивировали до 90% монослоя, затем пересевали в новые флаконы. Процедура повторялась до суммарной дозы 60 Гр.

Известен способ получения радиорезистентных опухолевых клеток человека (Shimura, Т. et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3b mediated cyclin Dl overexpression / T. Shimura, S. Kakuda, Y. Ochiai, H. Nakagawa, Y. Kuwahara, Y. Takai, J. Kobayashi, K. Komatsu, M. Fukumoto // Oncogene. 2010. N. 29. P. 4826-4837), где клетки подвергали воздействию фракционированного облучения рентгеном в дозе 0,5 Гр каждые 12 ч, 6 дней в неделю.

Общим недостатком представленных выше способов является тип воздействия к которому вырабатывается резистентность - рентгеновское излучение.

Известны и другие способы получения радиорезистентных клеток, так в работе Y. Kuwahara et al. (Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, Ohkubo Y, Fukumoto M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009 Apr; 100(4):747-52. doi: 10.1111/j.1349-7006.2009.01082.x. Epub 2009 Feb 2), облучение клеток карциномы печени проводили в дозе 0,5 Гр каждые 12 ч в течение более 6 лет; суммарная доза составляла более 1600 Гр. В другом исследовании (Qing, Y. et al. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays / Y. Qing, X.Q. Yang, Z.Y. Zhong, X. Lei, J.Y. Xie, M.X. Li, D.B. Xiang, Z.P. Li, Z.Z. Yang, G. Wang, D. Wang // BMC Cancer. 2010) для получения двух радиорезистентных клеток линии HeLa в течение 8 месяцев подвергали их непрерывному сублетальному облучению общей дозой 75 Гр с помощью нейтронного излучения 252Cf и рентгеновского излучения. Так же известно исследование, где в режиме фракционирования с дозой 2 Гр в день и 5 дней в неделю в течение 7 месяцев получали резистентные клетки (Wei, K. et al. Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to x-rays / K. Wei, R Kodym., J. Cui-Zheng // Radiat Environ Biophys. 1998. N. 37. P. 133-137).

Среди недостатков данных методов не только тип воздействия к которому вырабатывается резистентность, но и большие временные затраты для достижения результата.

Наиболее близким к заявляемому изобретению - прототипом, является способ предложенный K. Sato и др., где для выработки резистентных клонов использовали клетки плоскоклеочной карциномы NR-S1, которые облучали рентгеновским излучением в дозе 10 Гр 1 раз в две недели (6 Гр⋅экв в неделю) до суммарной дозы 60 Гр (72 Гр⋅экв). После окончательного облучения клетки культивировали в течение 4 недель до тестирующего воздействия рентгеновским излучением и ионами углерода (Sato, K. et al. Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells / K. Sato, T. Imai, R. Okayasu, T. Shimokawa // Radiation Research. 2014).

Как и в случае выше описанных подходов недостатком данного способа является факт выработки резистентности к ионам углерода. Указанный вид воздействия, так же как и протоны относится к тяжелым заряженным частицам, но обладает значительно более высоким значением относительной биологической эффективности, что не позволяет считать данные для ионов углерода, пригодными для прогнозирования биологических эффектов облучения протонами.

В результате поиска по источникам патентной и научно-технической информации не выявлено сведений о способе формирования радиорезистентной культуре опухолевых клеток, аналогичной заявляемой.

Технический результат направлен на создание культуры клеток с резистентностью к протонам, сформированной длительным фракционированным облучением протонами.

Указанный технический результат при осуществлении изобретения достигается за счет того, что также как и в известном способе проводят облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности.

Особенность заявляемого способа заключается в том, что культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв).

Изобретение поясняется подробным описанием, примерами исполнения и иллюстрациями, на которых изображено:

Фиг. 1 - Зависимость выживаемости клеток В16 после облучения протонами: В16 - родительская культура клеток; В16-е6 - сублиния, подвергнутая предварительному фракционированному облучению электронами.

Фиг. 2 - Моделирование облучения фракциями по 1, 2 и 4 Гр на основе полученных данных для родительской линии В-16 (пунктирная линия, «p») и ее радиорезистентной сублинии (сплошная линия, «e6-p»).

Фиг. 3 - Выживаемость клеток родительской линии и резистентных клонов при воздействии тестирующего облучения в дозе 4 Гр: белый столбик - родительские клетки, серый - резистентная к протонам сублиния.

Способ осуществляют следующим образом.

Культуру клеток мышиной меланомы В16 подвергают облучению электронами в разовой дозе (РОД) 6 Гр (1 раз в неделю) до суммарной дозы (СОД) 60 Гр или протонами в дозе 5 Гр (1 раз в неделю) суммарной дозы 70 Гр. В день облучения клетки снимают с пластика смесью растворов версена (0,02%) и трипсина (0,25%) в соотношении 1:1, ресуспендируют в среде RPMI-1640, содержащей 10% сыворотки, до получения одиночных клеток. Для облучения клеточную суспензию разливают в микроцентрифужные пробирки типа Эппендорф объемом 1,5 мл (Genfollower, Китай) по 1,3 мл. После облучения клетки подсчитывают в камере Горяева (Минимед, Россия) и высевают в количестве 200 тысяч на чашку Петри диаметром 35 мм (Corning, США). Пересев клеток и замена среды осуществляют при достижении плотности монослоя 90%. Между облучениями клетки культивируют в монослое в чашках Петри диаметром 35 мм (Corning, США) в среде RPMI-1640 (ПанЭко, Россия) с добавлением 10% эмбриональной телячьей сыворотки (Biosera, Франция) и гентамицина в количестве 0,01 мг/мл среды в СО2-инкубаторе (МСО-5АС, Sanyo, Япония) при температуре +37°C и 5% содержании CO2.

Выявленный эффект приобретенной опухолевыми клетками радиорезистентности к протонам может иметь ключевое значение в лучевой терапии с применением этого излучения. Это можно показать моделированием ответа клеток на большое количество фракций на основании кривых, представленных на Фиг. 1. При этом дозовая зависимость состоит из отдельных участков длиной в величину разовой дозы сеанса лучевой терапии. Моделирование для разовых доз 1, 2 и 4 Гр до суммарной дозы 20 Гр (20, 10 и 5 фракций соответственно) (Фиг. 2). Наибольшее отличие наблюдается при фракции в 1 Гр и составляет 5,5 Гр. С увеличением дозы за фракцию (переход к гипофракционированию) разница в эффективности воздействия уменьшается. Таким образом, даже незначительное (но статистически значимое) отклонение дозовой зависимости (при однократном облучении) ранее облученных клеток от кривой для исходных клеток может привести к значительному снижению эффективности облучения при фракционированном воздействии, принятом в лучевой терапии.

Предлагаемый способ подтверждается конкретными примерами использования.

Пример 1. После последнего фракционированного облучения клетки культивировали в течение двух недель. Затем проводили исследование радиочувствительности клеток получивших суммарную дозу электронов 60 Гр к действию протонного излучения методом клоногенной активности. Дозы тестирующего облучения протонами составили 4, 6, 8 Гр. До и после облучения клетки находились на льду. Сравнение проводили с родительской линией, клетки которой облучали теми же излучениями без предварительного воздействия. По результатам исследования был построен график зависимости выживаемости клеток В16 после облучения протонами (Фиг. 1) из которого видно, что кривая выживаемости после облучения протонами располагается ниже кривой выживаемости, где клетки были подвергнуты фракционированному облучению электронами. Применение парного критерия Стьюдента позволило судить о наличии статистически значимого различия в отклике на облучения двух сублиний В16 (Р<0.05).

Пример 2. После окончания фракционированного облучения протонами в суммарное дозе 70 Гр клетки культивировали в течение двух недель по стандартной методике. Затем проводили исследование радиочувствительности клеток к действию протонного излучения методом клоногенной активности. Доза тестирующего воздействия составила 4 Гр. Согласно представленным результатам (Фиг. 3) и данным применения критерия Стьюдента, клетки подверженные длительному фракционированному облучению протонами приобрели резистентность к последующему воздействию протонами.

Таким образом, предложенный способ позволяет эффективно получать резистентную клеточную культуру клеток, преимущество которой заключается в ее устойчивости к воздействию протонного излучения.

Полученная культура клеток может быть использована для проведения сравнительных радиобиологических исследований, направленных на выяснение и уточнение механизмов клеточной радиорезистентности, скрининг противоопухолевых препаратов в аспекте их применения в схемах химиолучевой терапии и на разработку эффективных схем лечения пациентов с рецидивами и метастазами, возникшими после ранее проведенного (неэффективного) курса лучевой терапии.

Способ формирования культуры опухолевых клеток, резистентной к протонам, включающий облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности, отличающийся тем, что культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв).



 

Похожие патенты:
Изобретение относится к медицине, а именно к онкологии и радиологии, и может быть использовано для лечения рака прямой кишки. Для этого во время проведения курса лучевой терапии осуществляют лекарственную терапию.

Изобретение относится к медицинской технике, а именно к устройствам для нейтронно-захватной терапии. Облучатель для нейтронно-захватной терапии содержит вход волоконного пучка, мишень, замедлитель, примыкающий к указанной мишени, отражатель вокруг указанного замедлителя, поглотитель тепловых нейтронов, примыкающий к указанному замедлителю, массив биологической защиты реактора и выход волоконного пучка, размещенные в облучателе, мишень служит для работы с протонными пучками, выведенными от входа волоконного пучка с возникновением атомной реакции для получения нейтронов, нейтроны образуют пучки нейтронов, ось пучков нейтронов направлена на замедлитель, который замедляет нейтроны, выделенные от мишени, направленные в активную зону эпитепловых нейтронов, между замедлителем и отражателем имеется воздушный или вакуумный зазор, с возможностью прохождения по нему пучка нейтронов для усиления интенсивности пучка эпитепловых нейтронов, при этом мишень отделена от зазора замедлителем и зазор образован отражателем, замедлителем и поглотителем тепловых нейтронов, отклоненные нейтроны будут отражены обратно по оси, чтобы повысить интенсивность пучка эпитепловых нейтронов, поглотитель тепловых нейтронов поглощает тепловые нейтроны, чтобы избежать чрезмерных поверхностных доз при терапии прямо под поверхностными нормальными тканями, массив биологической защиты реактора предназначен для защиты от утечки нейтронов и фотонов, чтобы уменьшить дозу для нормальных тканей в необлученных зонах.

Изобретение относится к медицинской технике, а именно к устройствам для нейтронно-захватной терапии. Облучатель для нейтронно-захватной терапии содержит вход волоконного пучка, мишень, замедлитель, примыкающий к указанной мишени, отражатель вокруг указанного замедлителя, поглотитель тепловых нейтронов, примыкающий к указанному замедлителю, массив биологической защиты реактора и выход волоконного пучка, размещенные в облучателе, мишень служит для работы с протонными пучками, выведенными от входа волоконного пучка с возникновением атомной реакции для получения нейтронов, нейтроны образуют пучки нейтронов, ось пучков нейтронов направлена на замедлитель, который замедляет нейтроны, выделенные от мишени, направленные в активную зону эпитепловых нейтронов, между замедлителем и отражателем имеется воздушный или вакуумный зазор, с возможностью прохождения по нему пучка нейтронов для усиления интенсивности пучка эпитепловых нейтронов, при этом мишень отделена от зазора замедлителем и зазор образован отражателем, замедлителем и поглотителем тепловых нейтронов, отклоненные нейтроны будут отражены обратно по оси, чтобы повысить интенсивность пучка эпитепловых нейтронов, поглотитель тепловых нейтронов поглощает тепловые нейтроны, чтобы избежать чрезмерных поверхностных доз при терапии прямо под поверхностными нормальными тканями, массив биологической защиты реактора предназначен для защиты от утечки нейтронов и фотонов, чтобы уменьшить дозу для нормальных тканей в необлученных зонах.

Изобретение относится к области медицины, а именно к онкологии и лучевой терапии, и может быть использовано для лечения плоскоклеточного рака ротоглотки. Вводят цетуксимаб в стартовой дозе 400 мг/м2 с последующей дозой 250 мг/м2 1 раз в неделю.

Группа изобретений относится к медицинской технике, а именно к средствам для интервенционной брахитерапии. Аппликаторное устройство выполнено с возможностью введения в или около исследуемую (-ой) область(и) внутри живого организма и с возможностью определения просвета для принятия источника излучения, причем аппликаторное устройство содержит один или несколько чувствительных элементов, каждый из которых расположен в предварительно заданном положении и выполнен с возможностью формирования выходного сигнала, указывающего, находится или нет источник излучения в предварительно заданном положении в просвете, при этом один или несколько чувствительных элементов является/ются одним или несколькими оптическими датчиками; причем каждый чувствительный элемент содержит источник оптического излучения в просвет и приемник оптического излучения для приема испускаемого оптического сигнала из просвета, причем источник оптического излучения и приемник оптического излучения расположены друг относительно друга таким образом, что испускаемый оптический сигнал либо перекрывается от достижения приемника оптического излучения, либо перенаправляется к приемнику оптического излучения, когда источник излучения находится в предварительно заданном положении, причем оптический сигнал, полученный приемником оптического излучения, когда источник излучения находится в предварительно заданном положении, является отличным от того, когда источник излучения не находится в предварительно заданном положении.

Группа изобретений относится к медицинской технике, а именно к средствам для интервенционной брахитерапии. Аппликаторное устройство выполнено с возможностью введения в или около исследуемую (-ой) область(и) внутри живого организма и с возможностью определения просвета для принятия источника излучения, причем аппликаторное устройство содержит один или несколько чувствительных элементов, каждый из которых расположен в предварительно заданном положении и выполнен с возможностью формирования выходного сигнала, указывающего, находится или нет источник излучения в предварительно заданном положении в просвете, при этом один или несколько чувствительных элементов является/ются одним или несколькими оптическими датчиками; причем каждый чувствительный элемент содержит источник оптического излучения в просвет и приемник оптического излучения для приема испускаемого оптического сигнала из просвета, причем источник оптического излучения и приемник оптического излучения расположены друг относительно друга таким образом, что испускаемый оптический сигнал либо перекрывается от достижения приемника оптического излучения, либо перенаправляется к приемнику оптического излучения, когда источник излучения находится в предварительно заданном положении, причем оптический сигнал, полученный приемником оптического излучения, когда источник излучения находится в предварительно заданном положении, является отличным от того, когда источник излучения не находится в предварительно заданном положении.

Изобретение относится к медицине, а именно к онкологии и онкопедиатрии, и может быть использовано для прогнозирования инфертильности у детей и подростков после риск-адаптированного лечения лимфомы Ходжкина (ЛХ).

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Изобретение относится к области радиофармпрепаратов для получения in vivo изображений, в частности автоматическим способам получения и очистки 18F-меченых радиофармпрепаратов для получения изображений тау-белка.

Изобретение относится к области медицины, а именно к радионуклидной диагностике и транспланталогии, и может быть использовано для определения митохондриальной дисфункции миокарда после трансплантации сердца с использованием радионуклидного метода.

Изобретение относится к медицине, а именно к медицинской радиологии, эндокринологии и хирургии, и может быть использовано для диагностики гиперфункционирующих паращитовидных желез.

Настоящее изобретение относится к биотехнологии, а именно к получению терапевтических и диагностических антител. Заявлен полипептид антитела со специфичностью связывания для калликреина-2 человека (hK2).

Группа изобретений относится к области приготовления радиофармацевтического препарата. Автономная горячая ячейка для приготовления радиофармацевтического препарата содержит корпус, несколько камер, образованных внутри корпуса с помощью установленных в нем стенок и включающих по меньшей мере синтезирующую и дозирующую камеру для радиофармацевтического препарата и отличную от нее вторую камеру, причем доступ между синтезирующей и дозирующей камерой и второй камерой обеспечен с помощью межкамерной двери или люка, систему создания давления в камерах, выполненную с возможностью поддержания синтезирующей и дозирующей камеры при первом давлении и поддержания второй камеры при отличном от первого втором давлении, причем первое давление превышает второе давление, при этом указанная система содержит систему труб, первый датчик, предназначенный для определения давления в режиме реального времени внутри синтезирующей и дозирующей камеры, и второй датчик, предназначенный для определения давления в режиме реального времени внутри второй камеры, и контроллер, выполненный с возможностью управления клапаном системы создания давления и/или вентилятором указанной системы на основании входного сигнала от указанных датчиков для поддержания синтезирующей и дозирующей камеры и второй камеры соответственно при первом и втором давлениях.
Изобретение относится к медицине, онкологии и химической технологии. Способ получения комплекса технеция-99м с рекомбинантными адресными молекулами белковой природы для радионуклидной диагностики онкологических заболеваний с гиперэкспрессией HER-2/neu заключается в том, что на первой стадии получают аквакарбонильный технеций-99м [99mTc(H2O)3(СО)3]+, используя лиофилизат натрия тетрабората декагидрата, натрия карбоната, динатрия боранокарбоната, который также может содержать калия натрия тартрата тетрагидрат или натрия цитрата моногидрат, далее к лиофилизату добавляют 1-3 мл раствора натрия пертехнетата, 99mTc с активностью 0,74-3,7 ГБк и нагревают на кипящей водяной бане 20-30 мин, охлаждают до комнатной температуры и добавляют 1М HCl до рН 7,4 или 300-900 мкл 1М раствора натрия фосфата с рН 7,4, далее проводят присоединение хелатирующего агента сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино)гексаноат (DPAH) к DARPin в фосфатном буфере рН 8,3-8,5 с получением DPAH-DARPin, затем проводят связывание аквакарбонильного технеция-99 м [99mTc(H2O)3(СО)3]+ с DARPin или DPAH-DARPin, для чего к DARpin или DPAH-DARPin в количестве 100 мкг в фосфатно-буферном растворе при рН 7,4 добавляют 1 мл раствора аквакарбонильного технеция-99м [99mTc(H2O)3(СО)3]+, далее инкубируют при 40°С в течение 30-60 мин, очистку проводят гель-фильтрацией на колонке.

Изобретение относится к медицине, а именно онкологии, и представляет собой способ радионуклидной диагностики рака молочной железы, включающий внутривенное введение радиофармацевтического препарата (РФП) и последующее сцинтиграфическое исследование, отличающийся тем, что вводят радиофармацевтический препарат на основе меченной 99mTc глюкозы в форме раствора для внутривенных инъекций в составе: 1-тио-D-глюкозы натриевой соли гидрата 0,625 мг, олова дихлорид 2-водный 0,044-0,052 мг, аскорбиновой кислоты 0,125 мг, натрия хлорида 8,0-10,0 мг, воды для инъекций до 1 мл, в дозе 500 МБк и через 40 мин после введения препарата выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере, полученные изображения подвергают постпроцессиноговой обработке с использованием пакета специализированных программ и при визуализации асимметричных участков гиперфиксации РФП в ткани молочных желез, более чем в 2 раза превышающей накопление в симметричном участке, диагностируют злокачественную опухоль.

Настоящее изобретение относится к медицине, в частности к способу лечения В-клеточного злокачественного заболевания, выбранного из группы, состоящей из неходжкинской лимфомы, острого лимфобластного лейкоза и хронического лимфоцитарного лейкоза.

Изобретение относится к медицине, а именно к онкологии и лучевой диагностике, и может быть использовано для оценки регионарной распространенности рака молочной железы методом однофотонной эмиссионной компьютерной томографии.

Изобретение относится к медицине, а именно к онкологии и лучевой диагностике, и может быть использовано для радионуклидной диагностики рака гортани и гортаноглотки.
Наверх