Способ охлаждения лопатки ротора турбины низкого давления (тнд) газотурбинного двигателя и лопатка ротора тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью стержней, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки. Стержни выполнены за одно целое с оболочкой пера лопатки со смещением в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. В способ охлаждения лопатки рабочего колеса ротора ТНД лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД. В полость лопатки охлаждающий воздух поступает через канал в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины. Полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера. Стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту удельного аэродинамического затенения повторяемой ячейки решетки К1уд.з.≤0,40. В диагональных рядах - пропорционально коэффициенту К2уд.з.≤0,35. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=≥0,86×10323]. Изобретение направлено на повышение эффективности охлаждения лопаток ротора ТНД. 2 н.п. ф-лы, 1 илл.

 

Группа изобретений относится к области авиадвигателестроения, а именно, к способу охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя в составе газоперекачивающего агрегата.

Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Лопатки выполнены пространственной формы с выпукло-вогнутым профилем пера с охлаждаемой полостью. Полость лопатки снабжена стержневыми перемычками (Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва. Наука 2011. стр. 495-522).

Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Охлаждаемая лопатка содержит перо, расположенное в направлении потока между передней и задней кромками и ограниченное стенками. Между стенками в полости расположены поперечно направлению потока воздуха стрежневые элементы (RU 2538978 С2, опубл. 10.01.2015)

К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков лопатки турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача группы изобретений состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов для транспортировки газа.

Поставленная задача решается тем, что в способе охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА) согласно изобретению лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения

К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,

где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения

К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,

где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.

Поставленная задача в части лопатки рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, решается тем, что лопатка согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того стержни расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза; то же, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах превышающем диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1 формулы.

Технический результат, достигаемый приведенной совокупностью признаков группы изобретений, объединенных единых творческих замыслом, состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней в наиболее теплонапряженной средней части длины пера лопатки, достигая тем самым расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения лопаток ТНД в процессе работы двигателя, и как следствие, повышение надежности и ресурса турбины и двигателя в целом.

Сущность группы изобретений поясняется чертежом, где изображена лопатка рабочего колеса ротора ТНД, продольный разрез.

Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА содержит хвостовик 1 и перо 2 с выпукло-вогнутым профилем, образованным вогнутой и выпуклой стенками, сопряженными входной и выходной кромками 3 и 4. Внутренняя полость 5 лопатки выполнена на полную высоту пера 2 лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД. Тракт охлаждения лопатки образован на входе каналом 6 в хвостовике 1 с возможностью перехода отработанного в полости 5 лопатки воздуха на выход в проточную часть турбины не менее чем через два отверстия 7 в периферийном торце 8 пера.

Полость 5 пера 2 в средней части наделена совокупностью стержней 9. Стержни 9 выполнены за одно целое с оболочкой пера 2 лопатки. Совокупность стержней 9 выполнена создающей решетку с поперечными и продольными рядами со смещением стержней 9 в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. Стержни 9 выполнены из прочного упругого высокотеплопроводного материала типа жаростойкой стали. Стержни 9 наделены функцией высокотеплопроводной перемычки между спинкой и корытом пера 2 лопатки. Стержни 9 расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах - не менее чем в четыре раза.

В способе охлаждения лопатки рабочего колеса ротора ТДН лопатку охлаждают воздухом, который подают через напорное кольцо (на чертежах не показано) тракта воздушного охлаждения ротора ТНД. В полость 5 лопатки охлаждающий воздух поступает через канал 6 тракта воздушного охлаждения лопатки в хвостовике 1 лопатки, заполняет полость 5 лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки с выходом нагретого воздуха не менее чем через два отверстия 7 в периферийном торце 8 пера 2 в проточную часть турбины. Полость 5 пера 2 лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце 8 лопатки на выходе из полости 5 пера

∑Fвх.к.л./∑Fвых.к.л.≥0,25.

Полость 5 пера 5 в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов.

Стержни 9 создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера 2 лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения

К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40, где

Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки;

Hст. и Dст. - соответственно высота и диаметр стержня;

Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки;

Вш.п. - величина шага.

В диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения

К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35, где

Fэ.с.д.. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки;

Fэ.ш.д. - условная площадь шага между осями смежных стержней в диагональном ряду решетки.

Коэффициент Когр.ст. суммарной (интегральной) площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней 9 составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены стержни 9, не менее

Когр.ст.=∑Fст./Fфр.п.≥0,062.

Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня 9 к единице его объема Vст. составляет

К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323].

Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней 9 в полости 5 пера 2 лопатки составляет

j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.

В процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают описанным выше способом.

Охлаждают лопатку рабочего колеса ротора ТНД следующим образом.

Лопатку изготавливают литьем по выплавляемым моделям с формообразующими микрополостями под стрежни 9 в средней части полости 5 пера 2 лопатки. По внутренней полости лопатки выполняют пять поперечных и одиннадцать продольных рядов со смещением стержней в смежных поперечных рядах в шахматном порядке на полшага с образованием в решетке перекрестных диагональных рядов. Стержни располагают в поперечном ряду с шагом, превышающем диаметр стержня в 2,8 раза; с шагом между поперечными рядами, превышающем диаметр стержня в 3,4 раза, в диагональных рядах - в 4,2 раза. Стержни 9 выполняют функцию высокотеплопроводной перемычки между стенками пера 2 лопатки.

Во внутреннюю полость 5 лопатки охлаждающий воздух поступает из напорного кольца через канал 6 в хвостовике 1 лопатки, заполняет полость 5 лопатки. Охлаждающий воздух проходит через решетку стержней 9, увеличивая теплосъем с пера 2 лопатки в средней наиболее теплонапряженной части лопатки, и через отверстия 7 в периферийном торце 8 пера 2 нагретый теплосъемом воздух выходит в проточную часть турбины. При этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, принятым К1уд.з.=0,37, в диагональных рядах принятым К2уд.з.=0,31. Коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки составляет Когр.ст.=0,059. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=0,81×10323]. Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=0,86×10-1.

Таким образом, за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней, монолитно соединяющих стенки пера в наиболее теплонапряженной средней части длины пера лопатки, достигают расширения температурного диапазона эксплуатации лопаток, повышения эффективности охлаждения лопаток ротора ТНД в процессе работы двигателя, а также повышение надежности и ресурса турбины и двигателя в целом, используемого в составе ГТУ ГПА и в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.

1. Способ охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА), характеризующийся тем, что лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемому из выражения

К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,

где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемому из выражения

К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,

где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.

2. Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, характеризующаяся тем, что содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того, стержни расположены в поперечном ряду с шагом, превышающим диаметр стержня не менее чем в 2,5 раза; то же с шагом между поперечными рядами, превышающим диаметр стержня не менее чем в три раза, а в диагональных рядах превышающим диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1.



 

Похожие патенты:

Изобретение относится к волокнистой заготовке для лопатки газотурбинного двигателя. Техническим результатом является повышение равномерности деформации полки лопатки под действием центробежной силы во время работы газотурбинного двигателя.

Изобретение относится к способу изготовления лопатки (100) газотурбинного двигателя из композиционного материала, содержащей волокнистое усиление, уплотненное матрицей.

Изобретение относится к способу изготовления лопатки (100) газотурбинного двигателя из композиционного материала, содержащей волокнистое усиление, уплотненное матрицей.

Изобретение относится к элементу (1) вала турбомашины (2), способу его изготовления и турбомашине (2) с элементом (1) вала. Элемент вала имеет по меньшей мере два соединенных неразъёмно друг с другом с помощью сварного шва (23) участка (15, 16) вала.

Группа изобретений относится к способу изготовления двухкомпонентной лопасти для газотурбинного двигателя, к лопасти для газотурбинного двигателя и газотурбинному двигателю.

Композитная лопатка компрессора содержит втулку, на которой закреплены ленты армирующего материала, пропитанные связующим веществом. Внутри втулки имеется вкладыш из антифрикционного материала.
Изобретение относится к способу получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии и может быть использовано в авиационном двигателестроении и энергетическом турбостроению.
Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от эрозионного разрушения.
Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2 с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев.

Изобретение относится к двухсплавной лопатке для газовой турбины, а именно к лопатке, имеющей по меньшей мере две части поверхности с разным составом. Лопатка (51) для ротора (35) газовой турбины (28, 30), содержащая литую подложку (70), включает хвостовик (55) для соединения лопатки (51) с ротором (35) газовой турбины (28, 30), платформу (54), имеющую нижнюю поверхность (61), из которой выступает хвостовик (55), и верхнюю поверхность (62), противоположную нижней поверхности (61), аэродинамический профиль (56), выступающий из верхней поверхности (62) платформы (54), противокоррозионный слой (71) сплава лопатки с высоким содержанием Cr, составляющим 15-23%, над подложкой (70), добавленный с помощью аддитивной технологии изготовления на нижнюю поверхность (61) и на хвостовик (55).

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой.

Настоящее изобретение относится к способу для изготовления узла (10) турбины, содержащего по меньшей мере один блок (12) профиля, содержащий по меньшей мере по существу полый профиль (14) по меньшей мере с одним охлаждающим каналом (16) для охлаждающей среды (18) и по меньшей мере одной входной поверхностью (20), при этом по меньшей мере один охлаждающий канал (16) входит по меньшей мере в одну входную поверхность (20), и дополнительно узел (10) турбины содержит по меньшей мере одну покрывающую пластину (22), которая по меньшей мере частично закрывает по меньшей мере одну входную поверхность (20).

Лопатка турбины турбинного двигателя, такого как турбовинтовой или турбореактивный двигатель, включает в себя хвостовик, перо, поддерживаемое хвостовиком, содержащее переднюю кромку и заднюю кромку, расположенную ниже по потоку от передней кромки, стенку стороны нагнетания и стенку стороны всасывания, расположенные на расстоянии друг от друга, которые соединяют переднюю кромку с задней кромкой.

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного теплообменника.

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами.

Охлаждаемая лопатка газовой турбины содержит полое перо с входной и выходной кромками, замковую часть и торцевую стенку. В полом пере установлена перегородка.

Охлаждаемая лопатка газовой турбины содержит полое перо, выполненное в виде передней и задней полости, разделенных радиальной перегородкой. В передней полости установлен передний дефлектор, в задней полости - задний дефлектор.

Турбинная лопатка содержит первую и вторую стеночные поверхности, соединительный канал и выступ. Первая стеночная поверхность обращена к охлаждающему каналу, по которому течет охлаждающий воздух.

Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток.

Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы камеры сгорания.

Группа изобретений относится к области авиадвигателестроения. Ротор ТВД двигателя содержит рабочее колесо ТВД, включающее диск и лопаточный венец с системой рабочих лопаток. Лопатка ТВД включает каждая хвостовик и перо с выпукло-вогнутым профилем стенок. Диск рабочего колеса выполнен в виде моноэлемента, включающего ступицу и полотно с ободом. Вал РВД образован сочетанием выполненных за одно целое с диском консольных кольцевых элементов для соединения с валом КВД и носком ТВД. Ротор ТВД включает напорный диск, образующий совместно с диском ротора кольцевой канал для подвода потока охлаждающего воздуха из аппарата закрутки воздуха к тракту воздушного охлаждения лопаток ТВД. В ободе диска выполнен диффузорный канал тракта, продолженный в замке, ножке и полке хвостовика лопатки ротора ТВД с выходом в охлаждаемую полость лопатки. Раздаточный коллектор распределения охлаждающего воздуха в полости лопатки сообщен с каналом циклонного охлаждения лопатки. Для чего циклонный канал снабжен двумя рядами отверстий - входным рядом отверстий в разделительной стенке и выходным рядом отверстия в спинке лопатки. Большая часть пера лопатки снабжена вихревой матрицей, дополненной на выходе из полости пера турбулизатором. Аппарат закрутки воздуха наделен системой конфузорных цилиндроконических сопел. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов ТВД, надежности и ресурса ТВД и двигателя в целом. 3 н. и 6 з.п. ф-лы, 8 ил.
Наверх