Устройство для измерения массы жидких компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и в импульсных режимах

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из электропневмоклапана, градуированных стеклянных трубок различного диаметра, при этом каждая трубка соединена с общим коллектором с помощью электропневмоклапанов и отсечного электропневмоклапана, согласно изобретению между полостью наддува устройства и выходным коллектором установлен датчик перепада давлений с возможностью измерения перепада давлений до и после пуска двигателя при достижении стабилизации показаний датчика и передачи сигнала в компьютерную систему измерения, обработки и отображения информации, а трубки содержат компоненты топлива, их количество, диаметр и длина обеспечивают работу двигателя от минимального единичного включения двигателя до режима с максимальным числом и длительностью импульсов при работе двигателя в импульсном режиме. Используется датчик перепада давлений с аналоговым или цифровым сигналом. Изобретение обеспечивает повышение точности определения основных параметров жидких компонентов, необходимых для определения массы топлива, прошедшей через двигатель. 2 з.п. ф-лы, 1 ил.

 

Настоящее изобретение относится к ракетно-космической технике (испытаниям жидкостных ракетных двигателей малой тяги (ЖРДМТ), используемых в качестве исполнительных органов систем управления космических аппаратов, разгонных блоков и других объектов в режиме одиночных включений и в импульсных режимах в стендовых условиях).

Известен ультразвуковой расходомер (Жуковский А.Е., Кондрусев B.C., Окорочков В.В. Испытания жидкостных ракетных двигателей. Учебник для студентов авиационных специальностей ВУЗов. - 2-е изд., перераб. и доп. - М.: Машиностроение, 1992. - 352 с .С. 298…301), работа которого основана на принципе ультразвуковой локации уровня компонентов топлива в расходомерном участке. Между излученными и отраженными от верхнего мениска ультразвуковыми импульсами существет временной интервал, пропорциональный высоте столба жидкости. В электронном управляющем блоке происходит преобразование сигнала, который вводится затем в компьютерную систему.

Основным недостатком уровнемера является тот факт, что погрешность измерения зависит от степени поглощения ультразвуковых колебаний рабочей жидкостью, для уменьшения этого влияния следует повышать мощность излучателя-приемника, (что не всегда удобно) и дополнительная погрешность измерения может возникнуть из-за изменения температуры компонента, что объясняется зависимостью скорости звука в жидкости от ее температуры (дополнительную погрешность из-за влияния температуры можно уменьшить коррекцией градуировочной характеристики по измеренной температуре компонента топлива).

Наиболее близким к заявленному техническому решению является объемный расходомер (уровнемер) (В.Г. Заботин, B.C. Кондрусев, В.Е. Нигодюк. Характеристики ЖРД. Министерство высшего и среднего образования РСФСР. Куйбышевский ордена Трудового Красного Знамени авиационный институт им. С.П. Королева. Учебное пособие, стр. 16, 17). Объемный расходомер выполняется обычно в виде прочной стеклянной калиброванной трубки, на наружной поверхности, которой нанесена оцифрованная миллиметровая шкала. Постоянство диаметра по длине расходомера обеспечивает линейность его характеристик, а диаметр трубки подбирают таким образом, чтобы обеспечивалась возможность фиксации изменения уровня при самом коротком импульсе (например, 100…150 мм для импульса продолжительностью 0,05 с).

Для измерения расхода в импульсном режиме параллельно основному объемному расходомеру устанавливают дополнительную мерную емкость (емкости) в виде трубок существенно большего диаметра, проградуированных совместно с основным расходомером. В суммарную погрешность измерения расхода входят погрешность градуировки расходомера, погрешность отсчета уровня при измерении, погрешность определения плотности компонентов топлива, в том числе, связанные с определением их температуры.

Основным недостатком этого расходомера являются сравнительно низкая точность визуального съема данных и градуировочных характеристик (поскольку проливки производятся, как правило, модельной жидкостью) а также невозможность определения расходов компонентов топлива, поступающих в ЖРДМТ, в системе автоматизированной обработки экспериментальных данных.

Технической задачей, на решение которой направлено заявленное изобретение является измерение массы компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и импульсных режимах.

Технический результат - повышение точности определения основных параметров жидких компонентов, необходимых для определения массы (массового расхода) топлива, прошедшей через двигатель.

Данная задача решается за счет того, что заявленное устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах работы, состоящее из электропневмоклапана, градуированных стеклянных трубок различного диаметра, при этом каждая трубка соединена с общим коллектором с помощью электропневмоклапанов и отсечного электропневмоклапана, отличающееся тем, что между полостью наддува устройства и выходным коллектором установлен датчик перепада давлений, с возможностью измерений перепада давлений до и после пуска двигателя при достижении стабилизации показаний датчика и передачи сигнала в компьютерную систему измерения, обработки и отображения измерительной информации, а трубки содержат компонента топлива, их количество, диаметр и длина обеспечивают работу двигателя от минимального единичного включения двигателя до режима с максимальным числом и длительностью импульсов при работе двигателя в импульсном режиме. При этом используется датчик перепада давлений с аналоговым сигналом, или датчик перепада давлений с цифровым сигналом.

Сущность изобретения поясняется чертежом, где схематично представлено устройство для измерения массы жидких компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и в импульсных режимах.

Устройство включает: отсечной ЭГЖ 3, ЭПК 4, ЭПК 5, датчик перепада давлений 6, ЭПК 7, калиброванные, градуированные трубки 8, 11, ЭПК системы наддува 9, ЭПК системы заправки 10, ЭПК 12.

Работает устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги как составная часть стенда следующим образом.

При открытых клапанах 3, 4, 5, 7, 9, 10, 12 заполняются топливные трубки 8, 11 компонентом жидкого топлива. Закрываются ЭПК 5, 10. При открытых клапанах 7 и 9 в устройство подается газ наддува. Закрываются клапаны 7 и 9. В системе наддува с помощью редуктора поднимается давление до величины равной давлению на входе в двигатель. Открываются клапаны 3, 4, 12, 5, 7, 9. Система находится под давлением, которое контролируется датчиком давления на входе в двигатель. Датчик перепада давления 6 показывают сигнал равный «0». Открывается ЭЖК двигателя 2. Производится пуск ЖРДМТ 1. Закрывается ЭЖК двигателя 2. Закрываются ЭПК 3, 4, 5. 7, 12. Сигнал с датчика перепада давлений после пуска двигателя и достижения стабилизации его показаний передается в компьютерную систему. Масса жидкого компонента определяется по зависимости массы жидкости от перепада давлений, установленной в ходе градуировок устройства на модельном или реальном компоненте топлива и заложенной в компьютер.

1. Устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из электропневмоклапана, градуированных стеклянных трубок различного диаметра, при этом каждая трубка соединена с общим коллектором с помощью электропневмоклапанов и отсечного электропневмоклапана, отличающееся тем, что между полостью наддува устройства и выходным коллектором установлен датчик перепада давлений, с возможностью измерения перепада давлений до и после пуска двигателя при достижении стабилизации показаний датчика и передачи сигнала в компьютерную систему измерения, обработки и отображения информации, а трубки содержат компоненты топлива, их количество, диаметр и длина обеспечивают работу двигателя от минимального единичного включения двигателя до режима с максимальным числом и длительностью импульсов при работе двигателя в импульсном режиме.

2. Устройство для измерения массы жидких компонентов топлива по п. 1, отличающееся тем, что используется датчик перепада давлений с аналоговым сигналом.

3. Устройство для измерения массы жидких компонентов топлива по п. 1, отличающееся тем, что используется датчик перепада давлений с цифровым сигналом.



 

Похожие патенты:

Изобретение относится к способам определения остатков жидкости в топливном баке и может быть использовано при экспериментальной отработке систем питания объектов ракетно-космической отрасли, в которых используют диафрагменные топливные баки малой емкости.

Изобретение относится к области испытаний ракетных двигателей малой тяги. Устройство для высотных испытаний ракетных двигателей выполнено с кормовым диффузором для обеспечения безотрывного течения продуктов сгорания в сопле ракетного двигателя при испытаниях и включает две вакуумные камеры и две вакуумные задвижки.

Изобретение относится к ракетной технике и может быть использовано для экспериментальной отработки жидкостных ракетных двигательных установок, в частности, с целью имитации высотных условий при их создании и модернизации.

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях, основанный на проведении испытания и регистрации диаграммы тяги изделия двухмостовым силоизмерительным датчиком.

Изобретение относится к области машиностроения и предназначено для контроля диаметра критического сечения регулируемого сопла при производстве авиационных или ракетных реактивных двигателей.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ).

Изобретение относится к общей области аэронавтики, в частности оно относится к контролю ракетного двигателя. Способ содержит: этап (Е10) получения измерения контролируемого параметра, измеряемого датчиком и соответствующего рабочей точке двигателя, причем эту рабочую точку определяют по меньшей мере по одному параметру регулирования двигателя; этап (Е20) оценки значения контролируемого параметра для этой рабочей точки на основании регулируемого значения или фильтрованного заданного значения указанного по меньшей мере одного параметра регулирования двигателя, определяющего рабочую точку; этап (Е40) сравнения ошибки между измерением контролируемого параметра и его оценкой относительно по меньшей мере одного порога, определенного на основании погрешности на указанной ошибке, оцененной для рабочей точки; и этап (Е60) передачи уведомления в случае перехода указанного по меньшей мере одного порога.

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН), обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, сброс парогазовой смеси (ПГС) в вакуумную камеру через дренажную магистраль (ДМ) и дренажный электропневмоклапан (ДЭПК), осуществлении подачи в ЭМУ теплоносителя и газа наддува до обеспечения заданных параметров парциального давления паров жидкости, соответствующего заданной секундной массе испарения жидкости при заданном начальном давлении наддува, а суммарное давление соответствует началу сброса ПГС в вакуумную камеру, осуществлении сброса ПГС из ЭМУ через ДМ и ДЭПК в вакуумную камеру на различных интервалах времени, соответствующих различным интервалам длительности работы сопел газореактивной системы ориентации и стабилизации ОС, и определении области параметров ТН, температуры ДМ, ДЭПК, длительности интервалов времени сброса ПГС, при которых появляется конденсат на внутренней поверхности ДМ, ДЭПК и его кристаллизация, осуществлении дополнительного подвода теплоты к ДМ, ДЭПК, минимальную величину которой определяют из условия предотвращения кристаллизации паров жидкости в ДМ и ДЭПК.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ), и предназначено для гашения РДТТ при наземной отработке, в том числе удлиненных РДТТ сложной конфигурации корпуса.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий.
Наверх