Способ радиолокации



Способ радиолокации
Способ радиолокации
Способ радиолокации

Владельцы патента RU 2692467:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров. Достигаемый технический результат - расширение рабочей зоны системы, по крайней мере, в секторе 30° на излучатель и уменьшение на четыре порядка времени локации. Указанный результат достигается за счет того, что способ радиолокации включает излучение зондирующего радиосигнала передатчиком, прием сигналов в удаленном пункте, определение направления на цель, пространственную фильтрацию прямого и отраженного сигналов и определение по ним и направлению на цель дальности до нее, при этом прием сигналов осуществляют с помощью антенн, образующих антенную решетку, принятые сигналы преобразуют в угловой спектр с нулем на передатчик, направление на цель определяют по положению максимума этого спектра, затем по принятым сигналам выполняют пространственную фильтрацию отраженного и прямого сигналов с управляемым нулем приема соответственно в направлении передатчика и цели. 3 ил.

 

Изобретение относится к радиотехнике и может быть использовано для локации объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров.

Известен способ пассивной радиолокации (патент РФ №2560089, 2015, G01S 13/00), включающий прием радиосигналов объекта не менее чем в трех пространственно-разнесенных пунктах и передачу их с периферийных на центральный пункт приема, где выполняют пространственно-временную обработку радиосигналов и определяют координаты объекта с учетом времени распространения электромагнитных волн и доплеровских сдвигов частот.

Недостатком способа является ограничение возможности применения условием наличия на объекте собственных источников радиоизлучения. Кроме того необходимо не менее трех пунктов приема с разветвленной системой связи для передачи принятых радиосигналов и управления.

Из известных наиболее близким к предлагаемому по технической сущности является способ разнесенной импульсной радиолокации (Теоретические основы радиолокации. Под ред. Я.Д. Ширмана. М., «Сов. радио», 1970, с. 10, 321-323), включающий излучение зондирующего радиоимпульса передатчиком, прием в удаленном пункте приема прямого сигнала передатчика с помощью ориентированной на него антенны и отраженного от цели сигнала с помощью сканирующей антенны или системы антенн, измерение углов прихода отраженного от цели сигнала, временного интервала между моментами прихода прямого и отраженного сигналов и расчет по результатам измерений дальности до цели от пункта приема, с учетом известного взаимного положения его и передатчика. При этом углы прихода отраженного от цели сигнала определяют по максимуму принятой от нее мощности, а момент прихода - по сигналу с этого направления.

Углы измеряют в общем случае в горизонтальной (азимут) и вертикальной (угол места) плоскости. Далее эти углы будем именовать пеленгом. Операции приема прямого и отраженного сигнала по физическому смыслу есть пространственная фильтрация, в данном случае высоконаправленными антеннами, ориентированными на цель и передатчик.

Способу-прототипу присущи следующие недостатки. В направлении передатчика и окружающего сектора образуется не рабочая зона, где прямой и отраженный сигналы не разрешаются по углам прихода и принимаются одновременно. В результате возникают недопустимые погрешности измерений пеленга цели и моментов запаздывания сигналов. Размеры зоны определяются шириной диаграммы направленности антенн и уровнем боковых лепестков исходя из необходимости подавления прямого сигнала до заданного относительно отраженного сигнала уровня для обеспечения потребной точности измерений. Учитывая, что плотность мощности отраженного сигнала существенно меньше, чем прямого сигнала трудно реализовать антенны требуемого размера, особенно в метровом диапазоне волн. Недостатком способа также является сложность проведения обзора системой узконаправленных антенн или большие временные затраты в случае применения одной сканирующей антенны.

Технической задачей данного изобретения является расширение рабочей зоны и уменьшение времени локации.

Поставленная техническая задача решается за счет того, что в известном способе радиолокации, включающем излучение зондирующего радиосигнала передатчиком, прием сигналов в удаленном пункте, определение направления на цель, пространственную фильтрацию прямого и отраженного сигналов и определение по ним и направлению на цель дальности до нее, согласно изобретению, прием сигналов осуществляют с помощью антенн, образующих антенную решетку, принятые сигналы преобразуют в угловой спектр с управляемым нулем приема на передатчик, направление на цель определяют по положению максимума этого спектра, после чего по принятым сигналам выполняют пространственную фильтрацию отраженного и прямого сигнала с управляемым нулем приема соответственно в направлении передатчика или цели.

Сущность изобретения заключается в том, что, в отличие от способа-прототипа, где необходимы высоконаправленные сканирующие антенны, предлагаемое решение состоит в объединении антенн в решетку, при снятии требования их высокой направленности, но формирования управляемого нулевого направления приема на передатчик или на цель. Ниже будет дан пример применения всенаправленных в горизонтальной плоскости антенн. Все направленность приема позволяет перейти от сканирования пространства высоконаправленными антеннами способа-прототипа к пространственно-временной обработке принятых сигналов, что упрощает и ускоряет процесс локации. Эту обработку выполняют последовательно в два этапа.

На первом этапе, принятые сигналы преобразуют в угловой спектр с нулем приема в направлении передатчика. Гарантированное формирование нуля приема в направлении передатчика обеспечивает расширение рабочей зоны вследствие сужения нерабочего сектора до прямой линии не зависимо от вида сигнала, в том числе, внешних непрерывных зондирующих излучений. Это свойство отсутствует в способе-прототипе, где максимум диаграммы ориентируют на цель или передатчик при не контролируемом уровне в направлении передатчика и цели.

В завершении первого этапа по положению максимума углового спектра определяют направление на цель, в виде пеленга на нее.

На втором этапе по принятым сигналам выполняют пространственную фильтрацию отраженного и прямого сигнала с нулем приема соответственно в направлении передатчика или цели. Данный этап может выполняться с приемом на дополнительном временном интервале или по ранее принятым сигналам их задержкой на время выполнения первого этапа.

Новые введенные операции предлагаемого способа с управляемым нулем приема могут быть выполнены по методике, приведенной в статье (Уфаев В.А. Потенциальные точности двухсигнального преобразования. Антенны. Вып. №5 (168), 2011, с. 44-47), с основными соотношениями (1), (2), (16), (17). Пример их осуществления приведен ниже.

Таким образом, предложенный прием сигналов с помощью антенн, образующих антенную решетку, пространственно-временная обработка принятых сигналов с управлением нулем направления приема: на передатчик или на цель, в соответствии с предложенными новыми действиями, условиями и порядком их выполнения, позволяет решить поставленную техническую задачу: расширить рабочую зону и уменьшить время локации.

Указанные преимущества и особенности настоящего изобретения поясняются вариантом его выполнения со ссылками на прилагаемые фигуры.

На фиг. 1 представлена структурная схема системы радиолокации для реализации заявленного способа;

на фиг. 2 - диаграммы направленности парциональных приемных каналов;

на фиг. 3 - угловой спектр принятых сигналов.

Система радиолокации (фиг. 1), реализующая предложенный способ, содержит передатчик 1, пункт приема 2, содержащий антенны 3.1-3.N, приемники 4.1-4.N, линии задержки 5.1-5.N, анализатор углового спектра 6, блок определения максимума 7, блок фильтрации прямого сигнала 8, блок фильтрации отраженного сигнала 9, измеритель задержки 10 и блок расчета расстояния до цели 11. Приемники 4.1-4.N входами подключены к одноименным антеннам 3.1-3.N, а выходами к входам одноименных линий задержки 5.1-5.N и одноименным входам анализатора углового спектра 6, выход которого через блок определения максимума 7 подключен к нулевым входам блоков фильтрации 8, 9 и первому входу блока расчета расстояния до цели 11. Выходы линий задержки 5.1-5.N соединены с одноименными входами блока фильтрации прямого сигнала 8 и блока фильтрации отраженного сигнала 9. Выход блока фильтрации прямого сигнала 8 подключен к первому входу, а блока фильтрации отраженного сигнала 9, ко второму входу измерителя задержки 10, выход которого соединен со вторым входом блока 11 расчета расстояния до цели. Выходами пункта приема 2 являются выход блока определения максимума 7 и блока расчета расстояния до цели 11.

Передатчик 1 является автономным техническим элементом системы. На приемном пункте 2 известно его и собственное местоположение, частота, ширина спектра излучения. Наряду с передатчиком, организационно входящим в систему, могут использоваться известные сторонние излучатели: радиомаяки, радио- и телецентры.

Антенны 3.1-3.N идентичные, всенаправленные в горизонтальной плоскости, типа вертикальный вибратор. Образуют антенную решетку, например, кольцевую, параллельную земной поверхности, с эквидистаным расположением на окружности заданного радиуса, или объемную, дополненную антеннами на перпендикуляре из центра кольцевой решетки. (Уфаев А.В., Уфаев В.А. Синтез и исследование алгоритмов двухмерного пеленгования с применением объемной антенной решетки. Антенны. 2013. Вып. №5 (192) с. 53-58).

Приемники 4.1.-4.N цифрового типа обеспечивают квадратурный прием с представлением принимаемых сигналов отсчетами квадратурных составляющих. (Побережский Е.С. Цифровые радиоприемные устройства. - М.: Радио и связь, 1987, с. 63-73).

Линии задержки 5.1, 5.2 предназначены для обеспечения запаздывания сигналов на время пространственного обзора и определения направления на цель в блоке определения максимума 7.

Другие элементы пункта приема 2 могут выполняться в виде цифровых устройств. Особенность состоит в том, что в обеспечение работы анализатора углового спектра 6 и блоков фильтрации 8, 9 предварительно определяют диаграммы направленности парциальных каналов антенной решетки как функции пеленгов двух объектов с управляемым нулем приема от второго из них по формуле

где - номер антенны и парциального канала при общем количестве N, θ1, θ2 - пеленг первого и второго объекта, - комплексная диаграмма направленности n-й антенны, - функция неопределенности, * - операция комплексного сопряжения.

Формула (1) принципиальна при управлении нулем приема. Обозначим пеленг передатчика θи, пеленг (истинный пеленг) цели θц, а возможный пеленг цели в пределах всего окружающего пространства как θ, где - π≤θ<π. Тогда видно, что в направлении передатчика, когда θ=θи, формируется просечка, ноль диаграммы направленности Переменой мест аргументов в формуле (1) достигается формирование нуля приема в направлении цели.

Эффект просечки виден на примере диаграмм направленности первых двух парциальных каналов антенной решетки фиг. 2.

Здесь и далее иллюстрации предлагаемого способа даны применительно к локации неподвижной наземной цели с применением кольцевой антенной решетки, когда комплексные диаграммы направленности антенн определяют по формуле

где j - мнимая единица, π - 3,14…, R - радиус антенной решетки, λ - длина волны излучения, β=0 - угол прихода радиоволн в вертикальной плоскости.

Приняты следующие исходные данные: число антенн решетки N=9, относительный радиус R/λ=1,5, пеленг передатчика θи=180°.

Последующая локация цели в соответствии с предлагаемым способом происходит следующим образом.

Передатчик 1 излучает зондирующие радиосигналы. В пункте приема 2 принимают сигналы на частоте передатчика с помощью антенн 3.1-3.N и приемников 4.1-4.N. Принятые сигналы представляют собой смесь радиосигналов, прямого и отраженного от цели, с запаздыванием, пропорциональным расстоянию распространения, определяемому взаимным положением передатчика, пункта приема и цели. Пути распространения показаны на фиг. 1 пунктиром, тонкими пунктирными линиями для отраженного радиосигнала.

Принятые сигналы где - номер временного отсчета при общем количестве T, запоминают в линиях задержки 5.1-5.N, а в анализаторе 6 преобразуют в угловой спектр с максимумом на цель и нулем приема в направлении передатчика.

При этом диаграммы направленности парциальных каналов определяют, как функции возможного пеленга цели и пеленга передатчика.

Преобразование многократных временных отсчетов в угловой спектр осуществляют по следующей формуле

Преобразование включает следующие действия: квадратурное перемножение принятых сигналов в различных сочетаниях пар антенн накопление в течение времени приема и усреднение по совокупности пар с весами равными квадратурным произведениям соответствующих пар диаграмм направленности парциальных приемных каналов.

На фиг. 3 показан угловой спектр принятых сигналов, когда цель удалена от передатчика на угловое расстояние равное 2 градуса (азимут цели θц=178°), амплитуда отраженного от нее сигнала равна 10, относительно среднего квадратического значения шума приема, амплитуда прямого сигнала равна 200, количество временных отсчетов T=100. Наблюдается просечка углового спектра в направлении передатчика при одновременном максимуме в направлении цели. Последнее свойство является основой для определения направления на цель по максимуму углового спектра. Данная операция выполняется в блоке определения максимума 7, на выходе которого получают оценку пеленга цели

Определив направление на цель (пеленг цели), выполняют пространственную фильтрацию сигнала отраженного от цели и прямого сигнала передатчика по принятым и задержанным на время получения пеленга цели сигналам, поступающим с линий задержки 5.1-5.N. Для фильтрации отраженного сигнала с нулем приема в направлении передатчика в блоке 9 сигналы когерентно суммируют с весами пропорционально значениям диаграмм направленности парциальных каналов в направлении цели и передатчика.

Процесс фильтрации описывается формулой

Масштабный коэффициент равный введен для приведения результатов фильтрации к центру антенной решетки.

Аналогично в блоке 8 выполняют пространственную фильтрацию прямого сигнала передатчика, но с нулем приема в направлении цели

В соответствии с соотношениями (4), (5) фильтрацию выполняют однотипно, переменой мест аргументов в диаграммах направленности парциальных приемных каналов.

Проведение пространственной фильтрации возможно также без применения линий задержки 5.1-5.N, путем приема сигналов на дополнительном временном интервале после определения в блоке 7 пеленга цели.

Заключительные действия выполняют, как и в способе-прототипе: измеряют задержку между отфильтрованными сигналами в измерителе 10, а в блоке 11 по полученному пеленгу и измеренной задержке рассчитывают расстояние до цели.

При локации воздушной подвижной цели измерение задержки выполняют с учетом доплеровского сдвига частот, а операции, описываемые соотношениями (1)-(5), как двухмерные по углам прихода радиоволн в горизонтальной и вертикальной плоскости.

Эффективность изобретения выражается в расширении рабочей зоны и уменьшении времени локации. Количественную оценку выполним следующим образом. Когда антенная решетка применяется для обзора пространства согласно способу-прототипу с формированием максимума диаграммы направленности решетки в направлении возможного положения цели, ширина основного лепестка ее диаграммы направленности равна Δθ=4⋅sin(1,23⋅λ/(2⋅π⋅R)) (Саидов А.С., Тагилаев А.Р., Алиев Н.М., Асланов Г.К. Проектирование фазовых автоматических пеленгаторов. - М.: Радио и связь. 1977, с. 59), для рассматриваемого примера составляет 30°. С учетом уровня боковых лепестков такой антенной решетки -8 дБ зона расширяется дополнительно в 3-5 раз. По крайней мере, на эту величину увеличивается рабочая зона системы предлагаемым способом. Уменьшение времени локации обусловлено переходом от механического сканирования пространства узконаправленными антеннами способа-прототипа с периодом единицы-десятки секунд к пространственно-временной обработке занимающей единицы миллисекунд и составляет, таким образом, четыре порядка.

Таким образом, предложенное техническое решение обеспечивает расширение рабочей зоны системы, по крайней мере, в секторе 30° от излучателя и уменьшение на четыре порядка времени локации.

Способ радиолокации, включающий излучение зондирующего радиосигнала передатчиком, прием сигналов в удаленном пункте, определение направления на цель, пространственную фильтрацию прямого и отраженного сигналов и определение по ним и направлению на цель дальности до нее, отличающийся тем, что прием сигналов осуществляют с помощью антенн, образующих антенную решетку, принятые сигналы преобразуют в угловой спектр с управляемым нулем приема на передатчик, направление на цель определяют по положению максимума этого спектра, после чего по принятым сигналам выполняют пространственную фильтрацию отраженного и прямого сигналов с управляемым нулем приема соответственно в направлении передатчика или цели.



 

Похожие патенты:

Изобретение относится к радиолокации и может использоваться в радиолокационных системах с синтезированием апертуры и непрерывным линейно-частотно-модулированным (ЛЧМ) излучением беспилотных летательных аппаратов для картографирования земной (морской) поверхности.

Изобретения относятся к области радиолокации и могут быть использованы для защиты радиолокационных станций (РЛС) от малоразмерных беспилотных летательных аппаратов (БПЛА).

Изобретение относится к конструкции досмотровых рамок, предназначенных для обнаружения взрывчатых веществ (ВВ) и других запрещенных предметов на теле человека в местах большого скопления людей в аэропортах, морских и речных вокзалах, театрах, стадионах и пр.

Изобретение относится к радиолокации, в частности к радиолокационным станциям (РЛС) кругового обзора для обнаружения и определения местоположения движущихся целей в ультракоротковолновом диапазоне электромагнитных волн (ЭМВ), и может быть использовано в системах управления воздушным движением (УВД).

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний до разного рода подвижных и неподвижных объектов при реализации в РЛС зондирующего составного линейно-частотно-модулированного (ЛЧМ) импульса, а также может быть использовано в радиолокации и гидролокации, в тех областях и сферах деятельности, где необходимо измерять расстояния до недоступных объектов.

Изобретение относится к навигации, в том числе радионавигации, и может использоваться для определения дальности между фазовыми центрами антенн двух объектов, перемещающихся относительно друг друга, и управления их движением в зонах навигации.

Изобретение относится к радионавигации и может использоваться для определения пространственных координат движущегося объекта и управления его движением в зонах навигации.

Изобретение относится к радионавигации и может использоваться для определения пространственных координат движущегося объекта и управления его движением в зонах навигации.

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера.

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем.

Изобретение относится к радиолокационной технике и может быть использовано для пространственной обработки радиотехнических сигналов. Достигаемый технический результат - улучшение функциональных возможностей модуля пространственной обработки радиотехнических сигналов за счет реализации процедуры повышения разрешения по азимуту.

Изобретение относится к области геодезии, картографии, фотограмметрии, навигации. Достигаемый технический результат – определение пространственных координат точек местности (объекта) по измеренным координатам их изображений на снимках, полученных с использованием беспилотного летательного аппарата.

Изобретение относится к области радиолокации, в частности к вторичной обработке радиолокационной информации, и предназначено для использования в системах сопровождения подвижных целей.

Изобретение относится к системам однопозиционной пеленгации источников радиоизлучения (ИРИ) и может быть использовано в системах и комплексах пассивной радиолокации и радиотехнической разведки наземного, воздушного и космического базирования.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) с фазированной антенной решеткой. Технический результат предлагаемого изобретения - однозначное измерение угла места радиолокационных целей, находящихся на больших углах места при малой ширине полосы рабочих частот.

Изобретение относится к радиолокационным системам обнаружения и идентификации помех и может быть использовано при их разработке. Техническим результатом изобретения является повышение вероятности идентификации помех, обеспечивающих согласованный увод по дальности и скорости, за счет использования дополнительной информации об ускорении цели и изменении угловой скорости линии визирования в горизонтальной или вертикальной плоскостях.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Техническим результатом является определение пространственных координат местоположения стационарных источников радиоизлучений (ИРИ) двумя мобильными (на любой транспортной базе: автомобильная, вертолетная, корабельная) постами, один из которых принят за базовый, простым способом без привлечения уравнений линий положения.

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы).

Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС). Достигаемый технический результат - сокращение времени использования активного режима РЛС, оснащенной пеленгаторами, при независимом сопровождении ими траектории излучающей или подсвечиваемой внешним радиоэлектронным средством цели и исключение ложных целей.

Изобретение относится к радиолокации, пеленгации и может использоваться для обнаружения низколетящих целей (НЛЦ). Достигаемый технический результат - возможность точного измерения угломестной координаты и определения траектории движения НЛЦ в условиях мешающих сигналов, условно представляющих собой антипод НЛЦ, антенной решеткой с более широкой диаграммой направленности и меньшей разрешающей способностью по дальности.

Способ определения местоположения объекта и устройство для его осуществления относятся к разделу физики и могут найти применение при определении абсолютных координат подвижного объекта относительно нулевой координаты для нужд пеленгации, измерении расстояния или скорости, определении местоположения, обнаружении объектов.
Наверх