Устройство кумуляции плазменных сгустков



Устройство кумуляции плазменных сгустков
Устройство кумуляции плазменных сгустков
H05H1/00 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2692689:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) (RU)

Изобретение относится к устройству торцевого типа предназначено для кумуляции плазменных сгустков, обладающих большим временем свечения в свободной атмосфере. В заявленном устройстве мощный импульс тока (длительностью ≈ 100 мс и силой тока до 15 кА), генерируемый индукционным накопителем электрической энергии, подается по кольцевому и аксиальному токоподводу на проводящую диафрагму. При протекании по ней электрического тока она нагревается, испаряется и за счет магнитогидродинамики в области разрядного промежутка и конвективных потоков формируется плазменный сгусток, который проходит сквозь элементы аксиального токоподвода и выходит из области разрядного промежутка. Конструкция устройства отличается компактностью и позволяет регулировать размеры плазменного сгустка за счет изменения внутреннего диаметра D кольцевого токоподвода от 60 до 150 мм. Кольцевой электрод выполнен из немагнитного материала, а аксиальный электрод состоит из набора радиально расположенных токопроводящих проволочек. Техническим результатом является повышение времени свечения плазменного сгустка в свободной атмосфере до 2 с. 2 ил.

 

Изобретение относится к устройствам получения низкотемпературной электроразрядной плазмы и может быть применено в области импульсной плазменной техники, занимающейся вопросами концентрации энергии в небольшом объеме.

Известно устройство кумуляции плазмы состоящее из коаксиально расположенных электродов - центрального цилиндрического и охватывающего его профилированного, состоящего из конической токопроводящей и цилиндрической ускоряющей частей [1].

Недостатком такого устройства является необходимость синхронизации взаимодействия струй при требовании соосности токопроводящих электродов.

Наиболее близким техническим решением к предлагаемому является устройство вакуумной эрозионной камеры. Камера имеет внутренние съемные вкладыши из различных диэлектриков. Вакуумный объем отделялся от атмосферы тонкой полиэтиленовой пленкой. В качестве сопла использовалась цилиндрическая насадка [1].

Однако для обеспечения работы устройства необходимо откачивать камеру до вакуума 10-2 мм рт.ст. Кроме этого, время свечения плазменного сгустка в свободной атмосфере не более 80-100 мс.

Целью изобретения является увеличение времени свечения плазменного сгустка в свободной атмосфере. Поставленная цель достигается тем, что устройство торцевого типа для кумуляции плазменных сгустков представляет собой систему кольцевого и аксиального электродов, соединенных проводящей диафрагмой. Инициатором разряда является проводящая диафрагма в форме круга, составленная из нескольких слоев алюминиевой фольги. Она располагается на диэлектрической подложке и прижимается к ней кольцевым электродом, выполненным из немагнитного проводящего материала. В центр диафрагмы устанавливается токоподвод из скрученных проволочек, количество которых, в зависимости от условий опыта, может изменяться от 4 до 8. Другой конец проволочек крепится по кругу на токоподвод. С целью уменьшения влияния на формирование плазменного сгустка магнитного поля, создаваемого токоподводом он располагается ниже области разрядного промежутка и с помощью дополнительного токоподвода импульс тока подводится по направляющим. Вся конструкция крепится на стойке.

На фиг. 1 представлена конструкция устройства; на фиг. 2 - взаимное расположение элементов аксиального и кольцевого токоподводов.

Устройство содержит аксиальный токоподвод 1, который скручивается из проволочек диаметром 1,0-2,4 мм, количество которых, в зависимости от условий опыта, может изменяться от 4 до 8. Инициатором разряда является проводящая диафрагма 4 в форме круга, составленная из нескольких слоев фольги. Она располагается на диэлектрической подложке 3 и прижимается к ней кольцевым токоподводом 2, выполненным из немагнитного материала. В центр диафрагмы устанавливается токоподвод 1 из скрученных проволочек, а другой конец - крепится по кругу на токоподвод 6. С целью уменьшения влияния магнитного поля на формирование плазменного сгустка токоподвод 6 располагается ниже области разрядного промежутка, а к токоподводу 5 импульс тока подводится по направляющим 7. Вся конструкция крепится на стойке 8.

Устройство работает следующим образом.

Мощный импульс ток ≈ 15 кА длительностью ≈ 100 мс, генерируемый индукционным накопителем электрической энергии, подается по кольцевому и аксиальному токоподводу на проводящую диафрагму. При протекании по ней электрического тока она нагревается, испаряется и за счет магнитогидродинамики в области разрядного промежутка и конвективных потоков формируется плазменный сгусток, который проходит сквозь проволочки аксиального токоподвода и выходит из области разрядного промежутка. Конструкция устройства отличается компактностью и позволяет регулировать размеры плазменного сгустка за счет изменения внутреннего диаметра D кольцевого токоподвода от 60 до 150 мм. Время свечения плазменного сгустка в свободной атмосфере доходит до 2 с. Это достигается за счет выполнения кольцевого токоподвода из немагнитного материала, так как на формирование и кумуляцию плазменного сгустка влияет только импульс тока, протекающий по аксиальному и кольцевому токоподводу.

1. Авторское свидетельство СССР №671681, Кл. Н05Н 1//00 Б.И. №18 от 15.05.80.

2. Андрианов A.M., Синицын В.И. Использование эрозионного разряда для моделирования одного из возможных видов шаровой молнии // ЖТФ. 1977, Том. 47, в. 11, с. 2318.

Устройство торцевого типа для кумуляции плазменных сгустков при атмосферном давлении, состоящее из кольцевого и аксиального электродов, соединенных проводящей диафрагмой, которая прижимается кольцевым электродом к диэлектрической подложке, отличающееся тем, что кольцевой электрод выполнен из немагнитного материала, а аксиальный электрод состоит из набора радиально расположенных токопроводящих проволочек.



 

Похожие патенты:

Изобретение относится к монолитной или составной изолирующей детали горелки для плазменной резки, для электрической изоляции между, по меньшей мере, двумя электропроводящими конструктивными элементами плазменной горелки.

Изобретение относится к устройству для плазменной резки (варианты), имеющему по меньшей мере один плазменный резак, который имеет корпус, электрод и сопло с отверстием.

Изобретение относится к средствам управления временем жизни магнитного поля замагниченной плазмы. Система содержит плазменный генератор для генерирования замагниченной плазмы, сохранитель потока для приема компактного тороида, источник питания для подачи импульса тока и контроллер для активного управления профилем тока импульса, чтобы поддерживать профиль q плазмы в заданном диапазоне.

Изобретение относится к электрическим ракетным двигателям, применяемым в составе двигательных установок космических аппаратов. Абляционный импульсный плазменный двигатель содержит установленные напротив друг друга два разрядных электрода: катод (1) и анод (2).

Изобретение относится к области химии, а именно к плазмохимической конверсии газа или газовой смеси с применением импульсного электрического разряда и к устройству для его выполнения.

Изобретение относится к способам создания направленного ионизирующего канала в воздушной среде и может быть использовано для создания устройств для научных исследований в области электричества, в частности для получения газоразрядной плазмы в воздушной среде и исследования ее свойств.

Изобретение относится к области упрочняющей термической обработки, а именно плазменной термической и химико-термической обработки поверхностного слоя деталей. Плазменную обработку ведут рабочей плазменной дугой прямой полярности, горящей между плазмообразующим соплом - катодом и изделием - анодом.

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей различных материалов в вакууме, а также в качестве автономно функционирующего источника плазмы.

Изобретение относится к области плазменной техники, а именно в катодах-компенсаторах, работающих на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей различных материалов в вакууме, а также в качестве источника плазмы.

Изобретение относится к средствам подачи рабочего тела (РТ) источников ионов и электронов и может быть использовано в пневматических трактах подачи РТ плазменным ускорителям и системам плазменного напыления, а также применяться в масс-спектрометрах и ионных микроскопах.

Группа изобретений относится к рентгеновской аппаратуре и может быть использована при создании средств исследования в области радиологии. Система содержит блок детектирования сигнала изображения, блок управления, обеспечивающий задание по меньшей мере одного установочного параметра, определяющего параметры изображения, блок обработки сигнала изображения, блок визуализации, блок записи, архивации и хранения изображения, блок интеграции с оборудованием комплекса и блок интеграции с внешними системами, блок формирования обратной связи, блок калибровок.

Изобретение относится к медицинской технике, а именно к рентгеновским комплексам для проведения широкого спектра различных рентгеновских исследований пациентов.

Изобретение относится к области рентгенотехники и может быть использовано в медицине, дефектоскопии, микроскопии. .

Изобретение относится к медицинской технике, а именно к рентгеновским аппаратам, и может быть использовано для визуального контроля облучаемой рентгеновским аппаратом зоны на теле пациента.

Изобретение относится к области радиационных технологий и может быть использовано для облучения жидких объектов, в частности донорской крови и ее компонентов. .

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к неразрушающему контролю объектов с помощью рентгеновского излучения. .

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных, отраслях машиностроения.

Изобретение относится к устройству торцевого типа предназначено для кумуляции плазменных сгустков, обладающих большим временем свечения в свободной атмосфере. В заявленном устройстве мощный импульс тока, генерируемый индукционным накопителем электрической энергии, подается по кольцевому и аксиальному токоподводу на проводящую диафрагму. При протекании по ней электрического тока она нагревается, испаряется и за счет магнитогидродинамики в области разрядного промежутка и конвективных потоков формируется плазменный сгусток, который проходит сквозь элементы аксиального токоподвода и выходит из области разрядного промежутка. Конструкция устройства отличается компактностью и позволяет регулировать размеры плазменного сгустка за счет изменения внутреннего диаметра D кольцевого токоподвода от 60 до 150 мм. Кольцевой электрод выполнен из немагнитного материала, а аксиальный электрод состоит из набора радиально расположенных токопроводящих проволочек. Техническим результатом является повышение времени свечения плазменного сгустка в свободной атмосфере до 2 с. 2 ил.

Наверх