Способ ранжирования воздушных целей



Способ ранжирования воздушных целей
Способ ранжирования воздушных целей
Способ ранжирования воздушных целей
Способ ранжирования воздушных целей
Способ ранжирования воздушных целей
Способ ранжирования воздушных целей

Владельцы патента RU 2692691:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Способ ранжирования воздушных целей (ВЦ) с учетом их рубежей достижимости и радиусов поражения их авиационных средств поражения (АСП). Достигаемый технический результат - повышение достоверности ранжирования ВЦ. Сущность изобретения заключается в том, что дополнительно определяют тип ВЦ, тип ее АСП, рассчитывают зону применения АСП по прикрываемым объектам обороны и зону достижимости ВЦ, вычисляют площадь пересечения зоны применения АСП и зоны достижимости ВЦ по топливу, определяют вероятность возможной атаки прикрываемых объектов обороны и ранжируют ВЦ. Способ заключается в том, что при известных типах (классах) ВЦ и их типовой боевой нагрузке позволяет оценить степень опасности каждой ВЦ для обороняемых объектов на основе анализа площадей пересечения зон достижимости ВЦ по топливу и круговых зон обороняемых объектов. 2 ил.

 

Способ ранжирования воздушных целей

Изобретение относится к системам автоматизации процессов сопровождения воздушных целей (ВЦ) различного назначения и может быть применено на пунктах управления авиационных частей и подразделений.

Известен способ ранжирования целей на основе определения координат и ранжировании по минимуму

где Дj, Vсбj - соответственно дальность до j-й ( - номер цели) сопровождаемой цели и скорость сближения с ней.

Недостатком данного способа ранжирования является низкая достоверность определения опасной цели, обусловленная отсутствием возможности определения вероятной атаки прикрываемых объектов и оценки возможного причиненного ущерба.

Технический результат предлагаемого способа заключается в повышении достоверности ранжирования ВЦ за счет определения вероятностей возможной атаки прикрываемых объектов обороны и степени их важности.

Указанный технический результат достигается тем, что в известном способе ранжирования воздушных целей после измерения координат ВЦ дополнительно определяют тип (класс) ВЦ и тип ее авиационных средств поражения (АСП), рассчитывают зону применения АСП по прикрываемым объектам обороны и зону достижимости ВЦ, вычисляют площадь пересечения зоны применения АСП и зоны достижимости ВЦ по топливу, определяют вероятность возможной атаки прикрываемых объектов.

Сущность изобретения заключается в том, что дополнительно определяют тип (класс) ВЦ, тип ее АСП, рассчитывают зону применения

АСП по прикрываемым объектам обороны и зону достижимости ВЦ, вычисляют площадь пересечения зоны применения АСП и зоны достижимости ВЦ по топливу, определяют вероятность возможной атаки прикрываемых объектов и ранжируют ВЦ.

Определение типа (класса) ВЦ может осуществляется за счет средств радиотехнической разведки (РТР) (см., например, Мельников Ю.П. Воздушная радиотехническая разведка (методы оценки эффективности). - М.: Радиотехника, 2005. - 304 с., С 124-136) и радиолокационных станций (РЛС) (см., например, Справочник по радиолокации, под редакцией М.И. Скольника. - М.: Техносфера, 2014. - 672 с. С 247-268). Обладая информацией о типе (классе) ВЦ и координатах аэродромов противника, можно оценить рубежи достижимости таких целей по топливу. Дополнительно по типу цели оценивается состав АСП, потенциально возможный наносимый ущерб обнаруженным ВЦ и рубежи применения оружия по ним. При этом, чем больше у обнаруженных ВЦ практический радиус действия и дальность применения АСП, тем они опаснее.

Известно, что рубеж достижимости воздушного судна (ВС) определяются запасом топлива на его борту и имеет форму эллипса (см., например, Андреевский В.В., Горощенко Л.Б. Управление полетом и эффективность авиационного комплекса. М.: Машиностроение, 1974. - С 24-37). Также известна номенклатура АСП противника пригодная для каждого класса ВС, что в свою очередь позволяет найти зону возможного применения АСП вокруг важных объектов обороны (см., например, Халимов Н.Р. Определение наиболее вероятных объектов атаки в АСУ при отражении воздушного налета. Сборник материалов международной военно-научной конференции «Основные направления адаптации объединенной системы ПВО государств - участников СНГ к решению задач воздушно-космической обороны». Секция №5 «Проблемы создания и перспективы развития АСУ войсками (силами) и подсистемами связи Объединенной системы ПВО государств - участников СНГ». - Тверь: ВА ВКО. - 2016. 231 с. С 216-220).

На основе анализа площадей пересечения рубежей достижимости ВЦ по топливу и зон возможного применения АСП вокруг прикрываемых объектов можно выявить наиболее вероятные объекты для атаки и объекты, находящиеся вне зон поражения.

Сущность изобретения поясняется фиг. 1, где представлено взаимное расположение зон достижимости ВЦ по топливу (Э1, Э2) и круговых зон обороняемых объектов (ОО1…ОО4), при пересечении которых образуются площади их взаимного пересечения ().

На фиг. 1 обозначены: ВЦ1 - позиция первой ВЦ; ВЦ2 - позиция второй ВЦ; A1 - аэродром взлета первой ВЦ; А2 - аэродром взлета второй ВЦ; Э1 - зона достижимости первой ВЦ; Э2 - зона достижимости второй ВЦ; ОО1…ОО4 - круговые зоны поражения прикрываемых объектов; площади пересечения зон достижимости по топливу и круговых зон прикрываемых объектов; X,Z - оси прямоугольной системы координат.

С помощью средств РТР и (или) с помощью сигнальной обработки в РЛС определяются текущие координаты ВЦ и их тип (класс). Позиция первой ВЦ (ВЦ1) и аэродром ее взлета А1, являются фокусами эллипса ее достижимости Э1. Позиция второй ВЦ (ВЦ2) и аэродром ее взлета А2, являются фокусами эллипса ее достижимости Э2. Размеры эллипсов Э1 и Э2 определяются боевым радиусом по классу (типу) ВЦ1 и ВЦ2. Вокруг четырех прикрываемых объектов обороны ОО1…ОО4 строятся круговые зоны поражения с радиусом определяемым АСП по классу ВЦ1 и ВЦ2. Далее анализируются площади пересечения эллипсов Э1 и Э2 с зонами поражения ОО1…ОО4 вычисляемыми, например, с помощью метода Монте-Карло (см., например, Каханер Д., Моулер К., Нэш С. Численные методы и программное обеспечение: перевод с англ. - изд. второе, стереотип. - М.: Мир, 2001. 575 с. С 371-392). Из фиг. 1 следует, что ВЦ1 и ВЦ2 не представляют угрозы для OO1 и OO2, так как остаток топлива не позволяет долететь до рубежа применения АСП. Для ВЦ1 рубеж достижимости (Э1) пересекается только с зоной

поражения второго ОО2 следовательно делается вывод о высокой вероятности полета ВЦ1 для атаки второго OO2. Для ВЦ2 рубеж достижимости (Э2) пересекается с зонами поражения второго OO2 и третьего ОО3, при этом площади этих пересечений различны следовательно делается вывод о возможной атаке ВЦ2 двух объектов обороны ОО2 и ОО3 однако более вероятна атака третьего объекта обороны OO3.

Заявленный способ осуществляется в следующем порядке:

1. Определяются координаты обнаруженной ВЦ в прямоугольной системе координат ХВЦ, ZВЦ;

2. С помощью средств РТР и (или) РЛС выполняется распознавание класса (типа) обнаруженной ВЦ, по которому определяется практическая дальность полета ВЦ Lmax и типовой вариант загрузки АСП ВЦ.

3. Из типового варианта боевой нагрузки ВЦ определяем АСП с максимальной дальностью применения Wmax.

4. Определяем возможную границу зоны поражения r-го объекта обороны ВЦ с АСП максимальной дальности применения:

где Xor, Yor - координаты местоположения r-то объекта обороны.

5. Находим уравнение эллипса достижимости ВЦ по топливу по двум фокусным точкам - координатам аэродрома и текущим координатам ВЦ.

6. Определяем область пересечения Sr эллипса достижимости по топливу ВЦ и окружностью - зоной применения АСП по r-му объекту обороны методом Монте-Карло. Указанная задача решается для всех объектов обороны в рассматриваемой зоне. После проведения расчетов площади пересечения эллипса достижимости ВЦ и области применения АСП для всех объектов обороны получаем множество пересечений A{S1, S2, …, Sr …, SR}, где R - общее количество прикрываемых объектов обороны в рассматриваемой зоне. Некоторые Sr в множестве А будут нулевые и из

дальнейшего анализа могут быть исключены. Поэтому из множества А составим множество A*{Sr} с ненулевыми Sr.

7. Находится сумма всех ненулевых площадей Sr:

где R* - число объектов обороны, для которых площади пересечения эллипса достижимости ВЦ и области применения АСП отличны от нуля.

8. Тогда вероятность возможной атаки ВЦ r-го объекта обороны:

9. Ранжирование осуществляется путем упорядочивания функционалов с учетом важности объектов обороны, вычисленных для каждой ВЦ:

где kr - коэффициент важности r-го объекта обороны.

Устройство реализующее предлагаемый способ ранжирования воздушных целей приведено на фиг. 2, где обозначено: 1 - База данных о средствах воздушного нападения (СВН) и аэродромах противника; 2 - Блок вычисления зоны достижимости ВЦ; 3 - Блок вычисления зоны применения АСП; 4 - База данных о прикрываемых объектах обороны; 5 - Блок вычисления площадей пересечения; 6 - Блок вычисления вероятностей возможной атаки обороняемых объектов; 7 - Блок вычисления и ранжирования ВЦ.

Устройство работает следующим образом. На блок 1, блок 2 поступают данные о типе (классе) ВЦ от РТР, РЛС. Информация о СВН и аэродромах противника поступает с блока 1 на блок 2. С блока 2, блока 3 поступают данные о зонах достижимости ВЦ по топливу и зонах применения АСП на блок 5, где осуществляется вычисление площадей пересечения (Sj) зон достижимости ВЦ по топливу и круговых зон обороняемых объектов.

Данная информация поступает в блок 6. Далее в блоке 6 происходит вычисление вероятностей возможной атаки обороняемых объектов (Pi). Затем в блок 7 поступает информация с блока 6, а также информация с блока 4, на основе чего осуществляется ранжирование по степени опасности ВЦ.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы микропроцессоры, широко распространенные в области электроники и электротехники.

Способ ранжирования воздушных целей, основанный на определении координат воздушных целей и их ранжировании, отличающийся тем, что после измерения координат воздушных целей дополнительно определяют тип - класс воздушных целей и тип их авиационных средств поражения за счет средств радиотехнической разведки и радиолокационных станций, обладая информацией о типе - классе воздушных целей и координатах аэродромов противника, определяют рубежи достижимости воздушных целей по топливу, из типового варианта боевой нагрузки воздушных целей определяют авиационные средства поражения с максимальной дальностью применения, определяют возможную границу зоны поражения объектов обороны воздушными целями с помощью авиационных средств поражения максимальной дальности применения, рассчитывают зону применения авиационных средств поражения по прикрываемым объектам обороны и зону достижимости каждой воздушной цели, вычисляют площадь пересечения зоны применения авиационных средств поражения и зоны достижимости каждой воздушной цели по топливу, определяют вероятность возможной атаки прикрываемых объектов, ранжируют воздушные цели путем упорядочивания функционалов с учетом важности объектов обороны, вычисленных для каждой воздушной цели.



 

Похожие патенты:

Изобретения относятся к области радиолокации и могут быть использованы для совершенствования средств управления (СУ) зенитно-ракетных комплексов или систем. Достигаемым техническим результатом является увеличение дальности обнаружения целей СУ, повышение помехозащищенности от пассивных помех.

Изобретения относятся к области радиолокации и могут быть использованы для защиты радиолокационных станций (РЛС) от малоразмерных беспилотных летательных аппаратов (БПЛА).

Изобретение относится к конструкции досмотровых рамок, предназначенных для обнаружения взрывчатых веществ (ВВ) и других запрещенных предметов на теле человека в местах большого скопления людей в аэропортах, морских и речных вокзалах, театрах, стадионах и пр.

Изобретение относится к конструкции досмотровых рамок, предназначенных для обнаружения взрывчатых веществ (ВВ) и других запрещенных предметов на теле человека в местах большого скопления людей в аэропортах, морских и речных вокзалах, театрах, стадионах и пр.

Настоящее изобретение относится к измельчительной машине, такой как дробилка, мельница или тому подобное, у которой измельчаемый материал проводится через зазор, который выполнен между по меньшей мере одним слоем износа, нанесенным на компонент измельчительной машины, и ответной поверхностью и с прогрессирующим износом по меньшей мере одного слоя износа меняется в своей протяженности, которая отличается тем, что для определения износа, возникающего на слое износа, и/или для определения имеющей место в каждом случае протяженности зазора между слоем износа и ответной поверхностью согласована направленная на соответствующую ответную поверхность радиолокационная антенна, причем радиолокационная антенна включает в себя антенную область и изнашиваемую часть, которая согласована, по меньшей мере, с предусмотренной для допустимого износа областью слоя износа и с износом слоя износа в каждом случае укорачивается.

Изобретение относится к радиолокационным способам обнаружения и определения подвижных и неподвижных надводных объектов, их координат и параметров движения на дальностях прямой видимости до 800 км с использованием радиолокаторов на летательных аппаратах.

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем.

Изобретение относится к железнодорожной автоматике для определения ординат пассажирских поездов и автоматического управления тормозами на остановочных пунктах. Система содержит нелинейную радиолокационную станцию (НРЛС) на локомотиве, метку в виде нелинейно-рассеивающей цели - маркера (HP) в начале остановочной платформы.

Изобретение относится к методам сопровождения по углу места низколетящих целей в условиях интерференции над отражающей морской поверхностью. Достигаемым техническим результатом является повышение точности измерений.
Изобретение относится к области радиолокации и может быть использовано для определения дальности до постановщика прицельной по частоте шумовой помехи (ПП) радиолокационной станции (РЛС) в средстве управления зенитно-ракетной системы (СУ ЗРС).

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации объектов, обнаруживаемых РЛС. Технический результат - повышение вероятности правильной идентификации обнаруженных объектов в условиях наличия нескольких максимумов функции правдоподобия идентификационных признаков к их текущим навигационно-связным оценкам.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров.

Изобретение относится к радиолокации и может использоваться в радиолокационных системах с синтезированием апертуры и непрерывным линейно-частотно-модулированным (ЛЧМ) излучением беспилотных летательных аппаратов для картографирования земной (морской) поверхности.

Изобретения относятся к области радиолокации и могут быть использованы для совершенствования средств управления (СУ) зенитно-ракетных комплексов или систем. Достигаемым техническим результатом является увеличение дальности обнаружения целей СУ, повышение помехозащищенности от пассивных помех.

Изобретение относится к конструкции досмотровых рамок, предназначенных для обнаружения взрывчатых веществ (ВВ) и других запрещенных предметов на теле человека в местах большого скопления людей в аэропортах, морских и речных вокзалах, театрах, стадионах и пр.

Изобретение относится к области радиолокации и может быть использовано в авиационных бортовых радиолокационных станциях (БРЛС) для обнаружения летящего или зависшего вертолета на фоне подстилающей поверхности.

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов в соответствии с корреляционно-экстремальным принципом навигации.

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера.

Изобретение относится к области активной радиолокации и может быть использовано при проектировании и создании цифровых широкополосных речных, морских и охранных радиолокационных систем.

Изобретение относится к области радиотехники и может применяться в системах трехкоординатной полуактивной радиолокации с использованием, в качестве сигналов подсвета, излучений радиоэлектронных систем различного назначения, в частности сигналов цифрового телевизионного вещания стандарта DVB-T2, для определения координат, скоростей и траекторий перемещающихся в пространстве воздушных объектов (ВО), в том числе маловысотных.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров.

Способ ранжирования воздушных целей с учетом их рубежей достижимости и радиусов поражения их авиационных средств поражения. Достигаемый технический результат - повышение достоверности ранжирования ВЦ. Сущность изобретения заключается в том, что дополнительно определяют тип ВЦ, тип ее АСП, рассчитывают зону применения АСП по прикрываемым объектам обороны и зону достижимости ВЦ, вычисляют площадь пересечения зоны применения АСП и зоны достижимости ВЦ по топливу, определяют вероятность возможной атаки прикрываемых объектов обороны и ранжируют ВЦ. Способ заключается в том, что при известных типах ВЦ и их типовой боевой нагрузке позволяет оценить степень опасности каждой ВЦ для обороняемых объектов на основе анализа площадей пересечения зон достижимости ВЦ по топливу и круговых зон обороняемых объектов. 2 ил.

Наверх