Способ получения микрошариков для световозвращающих покрытий

Изобретение относится к способу получения стеклянных микрошариков, которые могут быть использованы при разметке поверхности дорог и при изготовлении световозвращающих устройств. Натрий-кальций-силикатное стекло для изготовления СМШ варят в газовой или электрической стекловаренной печи по общепринятой в стеклоделии технологии с последующим гранулированием расплава стекла. Полученный стеклогранулят далее подвергают измельчению и классификации полученных при измельчении порошков стекла на фракции в диапазоне размеров 5-1500 мкм. Затем из полученных порошков стекла формуют стеклянные микрошарики во взвешенном состоянии в восходящем потоке газов при температуре 1100-1500°С. Охлаждение стекломассы, содержащей 54,0-70,0 мас.% SiO2, 17,0-30,0 мас.% CaO, 7,0-16,0 мас.% Na2O и/или K2O, 0-5,0 мас.% MgO, 0-5,0 мас.% Al2O3 и не более 0,1 мас.% Fe2O3, производят со скоростью предотвращающей образование кристаллической фазы. Технический результат заключается в повышении эффективности световозвращения стеклянных микрошариков за счет увеличения показателя преломления стекла, увеличения коэффициента светопропускания стекла, увеличения поверхностного натяжения стекла и снижения температурного диапазона изменения вязкости стекла в интервале от 104 Па*с до 108 Па*с. 3 з.п. ф-лы, 2 табл., 4 пр.

 

Предложенное решение относится к способам получения стеклянных микрошариков, которые могут быть использованы при разметке поверхности дорог и при изготовлении световозвращающих устройств, например, в системах обеспечения безопасности дорожного движения.

В отечественной и мировой практике широко применяются световозвращающие материалы, содержащие стеклянные микрошарики (СМШ). При этом качество световозвращения СМШ характеризует величина коэффициента световозвращения, которая определяется показателем преломления, коэффициентом светопропускания и величиной поверхностного натяжения стекла, используемого для производства СМШ (патент РФ № 2602328, МПК C03B 19/10, 2013 г.).

В настоящее время для производства СМШ для дорожной разметки используется натрий-кальций-силикатное прозрачное бесцветное стекло (Методические рекомендации по устройству горизонтальной дорожной разметки безвоздушным способом. Приняты и введены в действие распоряжением Государственной службы дорожного хозяйства РФ (Росавтодора) от 01.11.2001 г. № OC-450-р). СМШ для дорожной разметки получают из боя стекла, в основном листового.

Наиболее близким к предлагаемому решению является способ изготовления стеклянных шариков (патент РФ № 2233808, МПК C03B 19/10, 2002 г.), используемых для светоотражающих устройств. Недостатком СМШ, получаемых по данному способу, является низкая эффективность световозвращения (не более 280 мКд) в виду малого показателя преломления стекла (не более 1,53), невысокого коэффициента светопропускания и высокого содержания частиц несферической формы (до 20%). Большое содержание частиц несферической формы связано с недостаточно высоким поверхностным натяжением данного стекла (не более 325 мН/м при 1300°С) и большим температурным диапазоном изменения вязкости стекла от 104 Па*с до 108 Па*с.

Технический результат предложенного решения заключается в повышении эффективности световозвращения СМШ, полученных по данному способу. Повышение эффективности световозвращения СМШ обеспечивается за счет:

увеличения показателя преломления стекла;

увеличения коэффициента светопропускания стекла;

увеличения поверхностного натяжения стекла;

снижения температурного диапазона изменения вязкости стекла в интервале от 104 Па*с до 108 Па*с.

Указанный технический результат достигается тем, что в способе получения микрошариков для световозвращающих покрытий из прозрачного бесцветного натрий-кальций-силикатного стекла охлаждение стекломассы, содержащей 54,0-70,0 мас.% SiO2, 17,0-30,0 мас.% CaO, 7,0-16,0 мас.% Na2O и/или K2O, 0-5,0 мас.% MgO, 0-5,0 мас.% Al2O3, не более 0,1 мас.% Fe2O3 и имеющей показатель преломления более 1,53, предпочтительно не менее 1,539, производят со скоростью предотвращающей образование кристаллической фазы, охлажденное стекло сушат, измельчают, классифицируют по фракциям и формуют. Формование микрошариков осуществляют из предварительно фракционированных порошков с размером частиц 5-1500 мкм во взвешенном состоянии в восходящем потоке газов при температуре 1100-1500оС. Охлаждение стекломассы в предложенном решении осуществляют отливкой в воду. Поверхностное натяжение полученного стекла составляет при температуре 1300°С не менее 335 мН/м. Температурный диапазон изменения вязкости полученного стекла от 104 Па*с до 108 Па*с не превышает 216°С.

Снижение до 216°С температурного диапазона изменения вязкости стекла в интервале от 104 Па*с до 108 Па*с сокращает время формования СМШ, поэтому они меньше деформируются от соприкосновения между собой и корпусом печи, что увеличивает содержание СМШ сферической формы в готовом продукте.

Удельный вес стекла, полученного предложенным способом, составляет не более 2,8 г/см3, так как в нем отсутствуют тяжелые металлы, применение которых приводит к повышению стоимости стекла, отрицательно сказывается на экологии и снижает производительность установок по производству СМШ.

Условия охлаждения стекломассы (начальная температура отливки расплава, а также скорость его охлаждения) оказывают существенное влияние на кристаллизацию стекла в условиях подготовки расплава к выработке (отливке на гранулят). При этом температура выработки (отливки) расплава (стекломассы) должна быть выше температуры начала кристаллизации стекла не менее чем на 50°С, а скорость охлаждения расплава должна быть не менее 200°С/сек. В противном случае из-за образования в объеме стекла микрокристаллов происходит значительное снижение оптических показателей стекла (коэффициента светопропускания и, соответственно, коэффициента световозвращения СМШ).

Предложенный способ получения СМШ обеспечивает показатель преломления стекла более 1,53, предпочтительно не менее 1,539, а также:

увеличивает коэффициент светопропускания стекла;

увеличивает поверхностное натяжение стекла при температуре 1300°С не менее чем до 335 мН/м и снижает температурный диапазон изменения вязкости стекла от 104 Па*с до 108 Па*с, что значительно уменьшает долю несферических СМШ.

Натрий-кальций-силикатное стекло для изготовления СМШ варят в газовой или электрической стекловаренной печи по общепринятой в стеклоделии технологии с последующим гранулированием расплава стекла. Полученный стеклогранулят (стеклобой, эрклез) далее подвергают измельчению и классификации полученных при измельчении порошков стекла на фракции в диапазоне размеров 5-1500 мкм. Затем из полученных порошков стекла формуют стеклянные микрошарики во взвешенном состоянии в восходящем потоке газов при температуре 1100-1500°С. Охлаждение стекломассы, содержащей 54,0-70,0 мас.% SiO2, 17,0-30,0 мас.% CaO, 7,0-16,0 мас.% Na2O и/или K2O, 0-5,0 мас.% MgO, 0-5,0 мас.% Al2O3 и не более 0,1 мас.% Fe2O3, производят со скоростью предотвращающей образование кристаллической фазы, например, отливкой в воду.

Примеры составов стекол для предложенного способа приведены в таблице 1.

В последнем столбце таблицы приведен традиционный состав стекла, представляющий собой бой листового стекла, используемый для изготовления СМШ.

Свойства СМШ, полученных по предложенному способу из перечисленных в таблице 1 составов стекла, приведены в таблице 2.

Примеры охлаждения стекломассы.

Пример 1. Натрий-кальций-силикатное стекло для изготовления СМШ состава № 3 (см. табл. 1) сварили в печи до получения однородного расплава. Выработку стекла на гранулят осуществляли отливкой расплава в воду при температуре 1210°С, что на 50°С выше температуры начала кристаллизации стекла. Скорость охлаждения расплава при этом составила 200°С/сек. Технические показатели стекла и СМШ отражены в таблице 2.

Пример 2. Натрий-кальций-силикатное стекло состава № 3 (табл. 1) сварили в печи до получения однородного расплава. Выработку стекла на гранулят осуществляли отливкой расплава в воду при температуре 1110°С, что на 50°С ниже температуры начала кристаллизации стекла. Скорость охлаждения расплава при этом составила 220°С/сек. Коэффициент светопропускания стекла в этом случае составил 81%, а коэффициент светоотражения СМШ, полученных из этого стекла составил 294 мКд.

Пример 3. Натрий-кальций-силикатное стекло состава № 5 (табл. 1) сварили в печи до получения однородного расплава. Выработку стекла на гранулят осуществляли отливкой расплава в воду при температуре 1250°С, что на 60оС выше температуры начала кристаллизации стекла. Скорость охлаждения расплава при этом составила 220°С/сек. Технические показатели стекла и СМШ отражены в таблице 2.

Пример 4. Натрий-кальций-силикатное стекло состава № 5 (табл. 1) сварили в печи до получения однородного расплава. Выработку стекла на гранулят осуществляли отливкой расплава на охлаждаемую металлическую плиту при температуре 1140°С, что на 50°С ниже температуры начала кристаллизации стекла. Скорость охлаждения расплава при этом составила 80°С/сек. Коэффициент светопропускания стекла в этом случае составил 76%, а коэффициент светоотражения СМШ, полученных из этого стекла составил 252 мКд (показатели ниже, чем у прототипа).

Проведенные исследования показывают, что применение предложенного решения существенно повышает эффективность световозвращения СМШ.

1. Способ получения микрошариков для световозвращающих покрытий из прозрачного бесцветного натрий-кальций-силикатного стекла, отличающийся тем, что охлаждение стекломассы, содержащей 54,0-70,0 мас.% SiO2, 17,0-30,0 мас.% CaO, 7,0-16,0 мас.% Na2O и/или K2O, 0-5,0 мас.% MgO, 0-5,0 мас.% Al2O3, не более 0,1 мас.% Fe2O3 и имеющей показатель преломления более 1,53, предпочтительно не менее 1,539, производят со скоростью предотвращающей образование кристаллической фазы, охлажденное стекло сушат, измельчают, классифицируют по фракциям и формуют.

2. Способ по п. 1, отличающийся тем, что формование микрошариков осуществляют из предварительно фракционированных порошков с размером частиц 5-1500 мкм во взвешенном состоянии в восходящем потоке газов при температуре 1100-1500°С.

3. Способ по п. 1, отличающийся тем, что охлаждение расплава производят со скоростью не менее 200°С/сек.

4. Способ по п. 3, отличающийся тем, что охлаждение стекломассы осуществляют отливкой в воду.



 

Похожие патенты:

Изобретение относится к алюмосиликатным стеклянным композициям, содержащим щелочноземельный металл, с улучшенной химической и механической стойкостью, которые используют, в частности, для изготовления фармацевтических упаковок.

Изобретение относится к стеклу для световозвращающих микрошариков. Стекло содержит следующие компоненты, мас.%: 54,0-70,0 SiO2, 17,0-30,0 CaO, 7,0-16,0 Na2O и/или K2O, 0-5,0 MgO, 0-5,0 Al2O3 и не более 0,1 Fe2O3.

Изобретение относится к стеклянным контейнерам. Стеклянный контейнер включает стеклянное изделие, имеющее стеклянный корпус, простирающийся между внутренней поверхностью и внешней поверхностью и определяющий внутренний объем.

Настоящее изобретение относится к композиции стекловолокна, стекловолокну и композиционному материалу, содержащему указанное стекловолокно. Указанная композиция стекловолокна содержит следующие компоненты, выраженные в мас.%: 58-64 SiO2, 14-19 Al2O3, больше или равно 10 и меньше 11,8 СаО, 7,5-11 MgO, 0,2-2,7 SrO, 0,1-2 Na2O+K2O, 0,05-0,9 Li2O, 0,05-1 Fe2O3, 0,05-1,1 TiO2 и меньше 0,5 F2, при этом соотношение компонентов (в мас.%) C1=(MgO+SrO)/CaO) находится в диапазоне 0,75-1,1 и соотношение С2=CaO/MgO составляет менее 1,4.
Изобретение относится к способу получения заготовки из литийсиликатного стекла, которая может быть использована в качестве зубоврачебного материала. Для получения заготовки состава, включающего (вес.%) 46-72 SiO2, 10-25 Li2O и по меньшей мере 8 вес.%, предпочтительно от 9 до 20 вес.% стабилизатора из группы ZrО2, HfО2 или их смесей, сырьевые материалы в виде порошка с размером зерен d50=0,3-1,5 мкм плавят при температуре TAU =1450-1600°С в резервуаре.

Изобретение относится к волокнообразующей стеклянной композиции и волокнам, изготовленным из неё, которые могут быть использованы в виде нитей, ровинга, пряжи, тканого или нетканого полотна, в частности, в составе полимерных композитов.

Изобретение относится к химически и механически стойким композициям стекла и к изделиям из стекла, изготовленным из них, и может быть использовано для изготовления упаковки для лекарственных средств.

Данное изобретение относится к термостойким алюмосиликатным стекловолокнам, имеющим следующий состав, вес. %: SiO2 - 52-60, Аl2O3 - 14-16, Fe2O3 - <0,4, Na2O - 0,03-0,3, К2O - 0,3-0,7, СаО - 20-22, MgO - 0,4-0,8, ТiO2 -1-5, ВаО- 0,5-3, SrO - 0-2, ZrO2 - 0-3, СuО - 0-1, причем общая доля оксидов щелочных металлов в сумме составляет максимум 1,0 вес.%, причем общая доля оксидов SrO, CuO, ΖrO2 находится в пределах от 0,1 до 4,0 вес.% и причем термостойкое алюмосиликатное стекловолокно имеет температуру трансформации >760°С и температуру образования волокон <1260°С, предпочтительно <1230°С, при этом остаточная прочность на разрыв стекловолокон с диаметром от 9 до 15 μm после тепловой нагрузки 760°С находится в пределах от 10% до 15% по сравнению с исходной прочностью на разрыв при комнатной температуре.

Варианты осуществления настоящего изобретения относятся к композициям стекла, стекловолокнам, формованным из таких композиций и предназначенным для изготовления композитов и стеклопластиков.

Настоящее изобретение относится к стекловолокну, которое может быть использовано для армирования композиционных материалов для производства лопастей ветряных мельниц, сосудов высокого давления, компонентов в автомобильной, машиностроительной, аэрокосмической промышленности и т.п.

Изобретение относится к стеклу для световозвращающих микрошариков. Стекло содержит следующие компоненты, мас.%: 54,0-70,0 SiO2, 17,0-30,0 CaO, 7,0-16,0 Na2O и/или K2O, 0-5,0 MgO, 0-5,0 Al2O3 и не более 0,1 Fe2O3.

Изобретение относится к стеклошарикам, используемым для дорожной разметки. Способ нанесения покрытия из монтморрилонита и/или модифицированного монтморрилонита на стеклошарики включает приготовление суспензии монтмориллонита (ММТ) путем диспергирования ММТ в воде при 30-80°С при содержании 0,5-2% ММТ в суспензии.

Изобретение относится к области подготовки шихты для получения композиционных материалов. Технический результат изобретения заключается в повышении прочности отформованных стержней из сырьевой смеси.
Изобретение относится к области подготовки шихты для получения композиционных материалов. Технический результат изобретения заключается в повышении прочности отформованных стержней из сырьевой смеси и светоотражающей способности композиционных микрошариков.

Изобретение относится к вибрационному гранулятору стекломассы. Гранулятор содержит наполненный водой транспортирующий вибрационный лоток, состоящий из горизонтального корытообразного желоба, снабженного патрубками слива воды, и двух наклонных желобов, расположенных с противоположных сторон горизонтального корытообразного желоба.

Предложенное решение относится к стеклянным микрошарикам, которые могут быть использованы для струйной обработки, для противоожоговых кроватей, в качестве наполнителя (при изготовлении полимеров, цементов, бетонов, облицовочных материалов, мастик, шпатлевок, герметиков, синтаксических пен), для изготовления световозвращающих устройств, например, в системах обеспечения безопасности дорожного движения и, в частности, при разметке поверхности дорог.

Изобретение относится к производству строительных материалов, а именно к производству строительных деталей из шлакоситалла. Жидкое шлаковое стекло подается порциями одинакового размера на верхнюю точку арочной опалубки, стекает под действием гравитации вниз и застывает в тонких пленках.

Изобретение относится к устройству для получения микросфер и микрошариков из оксидных материалов. Устройство содержит плазменный генератор с вынесенным стабилизированным дуговым разрядом, включающий соосно и вертикально расположенные на расстоянии друг от друга катод и трубчатый полый графитовый анод.

Изобретение относится к получению полых микросфер. Способ получения полых микросфер оксидов металлов включает предварительную подготовку исходного порошка оксида металла и классификацию полученного порошка по размерам, последовательную загрузку одной из выделенных фракций порошка в дозатор, плавление и сфероидизацию в потоке низкотемпературного факела плазмы плазмотрона, охлаждение образовавшегося продукта и классификацию его по размерам с определением насыпного веса готовых микросфер.
Изобретение относится к способу и устройству для изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа с целью химического определения вещества предпочтительно в промышленности основных материалов.

Изобретение относится к области получения блочного пеностекла. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 0,5-5,0 мм.
Наверх