Способ получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина

Изобретение относится к способу получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина формулой

,

где n=2-10, со среднечисловыми молекулярными массами от 620 до 2500, в качестве исходного вещества используется водный раствор глицерина, на первой стадии превращающийся в водную смесь молочной кислоты и глицерина в контролируемом мольном соотношении молочная кислота : глицерин = 6:1; 10:1; 20:1; 30:1 в присутствии высокоселективного гетерогенного медьсодержащего оксидного катализатора в количестве 1,5-3,0 мас.% от массы глицерина при нагревании до 220-240°С в течение 6-8 часов, с дальнейшим взаимодействием полученных смесей при нагревании до 140-180°С и остаточном давлении 4000-400 Па с образованием разветвленных олигоэфиров. Технический результат заключается в получении олигомерных сложных эфиров молочной кислоты и глицерина из водного раствора глицерина в контролируемом мольном соотношении при нагревании в присутствии катализатора с последующей конденсацией в вакууме. 1 табл., 8 пр.

 

Изобретение относится к химической промышленности, а именно к получению молочной кислоты и новых производных на ее основе - разветвленных олигомерных сложных эфиров молочной кислоты и глицерина, которые могут быть использованы в качестве пищевых добавок, пластификаторов, а также в составе биоразлагаемых материалов биомедицинского назначения.

В настоящее время молочную кислоту промышленно получают ферментативными способами из различного растительного сырья [WO 2006124633 A1, опубл. 23.11.2006; CA 2748354 A1, опубл. 01.06.2010]. Данные процессы обладают рядом существенных недостатков, таких как низкая производительность процесса, обязательное наличие сложных и затратных стадий выделения и очистки целевого продукта, обусловливающие высокую конечную стоимость очищенной молочной кислоты.

Известны способы каталитического синтеза молочной кислоты, в частности, из биодоступного глицерина, образующегося в качестве побочного продукта при производстве биодизеля. Так, в патенте [US 20090088589 A1, опубл. 02.04.2009] описан гидротермальный процесс синтеза молочной кислоты при 300°С и 100 МПа, осуществляемый в автоклаве. Его недостатком является необходимость проведения процесса в жестких условиях, что обусловливает высокие материальные и энергетические затраты. Кроме того, реакционная смесь после завершения процесса содержит комплекс трудноотделяемых побочных продуктов, что делает нецелесообразным промышленное осуществление предлагаемого процесса.

Известны способы синтеза молочной кислоты в присутствии гетерогенных каталитических систем. Так, описан жидкофазный способ получения молочной кислоты с использованием Pt-содержащих катализаторов, нанесенных на различные подложки, такие как Pt/Al2O3, Pt/ZrO2, Pt/C [патент EP 2606968 A2, опубл. 26.06.2013]. Недостатком процесса является невысокая селективность образования молочной кислоты (40-70%), а также необходимость сложного отделения целевого продукта от побочных продуктов, а именно других карбоновых кислот (глицериновой, гликолевой, пировиноградной и уксусной).

Наиболее близким к предлагаемому на первой стадии данного изобретения способу получения молочной кислоты является гидротермальный синтез молочной кислоты в присутствии различных медьсодержащих катализаторов в щелочной среде [патент US 20120253067 A1, опубл. 04.10.2012]. Его недостатком также является недостаточно высокое значение селективности по целевому продукту (40-78%). При этом в патенте не отражена зависимость влияния свойств каталитических частиц на селективность образования молочной кислоты.

Известны продукты на основе молочной кислоты, представляющие собой:

- глицеролактатные или глицероацетатные эфиры, используемые в качестве источника энергии для мышц и тканей (US 6743821 B2, опубл. 01.06.2004);

- сложные эфиры полиглицерина и молочной кислоты, применяемые в качестве эмульгаторов в пищевой и табачной промышленности (CN 103145552 A, опубл. 12.06.13);

- сложные эфиры молочной кислоты, используемые в качестве ферроэлектрического жидкокристаллического материала (US 7005535, опубл. 28.02.2006);

Задача данного изобретения заключается в разработке способа синтеза новых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина формулы I, состоящего из стадий селективного получения молочной кислоты и глицерина из водного раствора глицерина в различном контролируемом соотношении с последующей их конденсацией с образованием целевых олигомерных продуктов.

где n=2-10.

Технический результат заключается в получении олигомерных сложных эфиров молочной кислоты и глицерина из водного раствора глицерина в контролируемом мольном соотношении при нагревании в присутствии катализатора с последующей конденсацией в вакууме.

Технический результат достигается в способе получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина формулой

где n=2-10, со среднечисловыми молекулярными массами от 620 до 2500, в качестве исходного вещества используется водный раствор глицерина, на первой стадии превращающийся в водную смесь молочной кислоты и глицерина в контролируемом мольном соотношении молочная кислота : глицерин = 6:1; 10:1; 20:1; 30:1 в присутствии высокоселективного гетерогенного медьсодержащего оксидного катализатора в количестве 1,5-3,0% масс. от массы глицерина при нагревании до 220-240°С в течение 6-8 часов, с дальнейшим взаимодействием полученных смесей при нагревании до 140-180°С и остаточном давлении 4000-400 Па с образованием разветвленных олигоэфиров.

Идентификацию реакционной смеси после первой стадии проводили с помощью метода хромато-масс-спектроскопии на газовом хроматографе GCMS-QP2010 (Shimadzu) с использованием колонки ZB-FFAP (30м х 0,32мм х 0,25 мкм). Количественный анализ продуктов осуществлялся методом ВЭЖХ на жидкостном хроматографе с рефрактометрическим детектором на колонке Rezex ROA-Organic acid (300 мм х 7.8 мм, Phenomenex). В качестве элюента использовался водный 0,01 М раствор серной кислоты с расходом 0,5 мл/мин. Температура анализа составляет 60°С.

Структуры синтезированных олигомерных сложных эфиров молочной кислоты и глицерина доказаны данными ИК и ЯМР - спектроскопии.

Молекулярно-массовое распределение полученных олигомеров определялось методом ГПХ.

Изобретение позволяет добиться следующих преимуществ: молочная кислота, используемая в процессе, получается в результате гидротермального синтеза в присутствии высокоселективного гетерогенного медьсодержащего оксидного катализатора из водного раствора глицерина. В предлагаемых условиях происходит высокоселективное образование молочной кислоты за указанное время, при этом частично непрореагировавший глицерин используется в качестве реактанта на второй стадии. Необходимое соотношение компонентов, от которого зависит строение и свойства олигомерных сложных эфиров молочной кислоты и глицерина, обеспечивается контролируемым варьированием параметров гидротермального процесса.

Для реализации способа используются следующие вещества:

Глицерин квалификации ч.д.а. (ГОСТ 6259-75);

Гидроксид натрия х.ч. (ГОСТ 4328-77);

Оксид меди (I) с размером частиц 30-45 нм [M. A. Khan, Mahboob Ullah, Tariq Iqbal, Hasan Mahmood, Ayaz A. Khan, Muhammad Shafique, A. Majid, Azhar Ahmed and Nawazish A. Khan. Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) Nanoparticles via Solvothermal Process. Nanoscience and Nanotechnology Research. 2015; 3(1):16-22];

Оксид олова (II), «Aldrich», CAS № 21651-19-4;

Метанол х.ч. (ГОСТ 6995-77);

Хлороформ (ГОСТ 20015-88);

Вода дистиллированная (ГОСТ 6709-72).

Способ получения олигомерных сложных эфиров молочной кислоты и глицерина реализуется в две стадии:

1. Синтез молочной кислоты из водного раствора глицерина, в результате которого образующийся продукт представляет собой смесь молочная кислота:глицерин:вода (МГВ) в различных соотношениях.

Пример 1. Синтез МГВ-1.

В реактор, оснащенный манометром, верхнеприводной мешалкой и термопарой, помещают 15,0 г (0,163 моль) глицерина, 7,16 г (0,179 моль) NaOH, 0,45 г (0,0031 моль) свежеприготовленного Cu2O, 285,0 мл воды, продувают инертным газом, нагревают при перемешивании (1000 об/мин) до 220°С и выдерживают в течение 6 часов. Затем реактор охлаждают, оксидный катализатор отделяют центрифугированием.

Для удаления катионов натрия и выделения целевого продукта в виде смеси молочная кислота:глицерин:вода раствор после центрифугирования подвергается электродиализной очистке путем пропускания через 20 электродиализных ячеек, ограниченных биполярными мембранами (Fumatech BWT GmbH). Поскольку молочная кислота в растворе находится в виде натриевой соли, то не требуется добавление дополнительных количеств NaOH для увеличения электропроводности. Начальное значение силы тока составляет 7,5 А. Полный переход смеси лактата натрия и глицерина в молочную кислоту и глицерин происходит в течение 4,5 часов при 30°С, при этом требуемое напряжение возрастает с 9,0 В до 16,0 В. Значение pH продуктовой смеси после электродиализа находится в интервале 2,5-3,0.

Конверсия глицерина составляет 86,5 %. Выход молочной кислоты - 82,2%. Баланс по углероду - 97,7 %. Мольное соотношение молочная кислота : глицерин = 6,1:1.

Пример 2. Синтез МГВ-2.

Реакцию осуществляют аналогично примеру 1 при 230°С в течение 8 часов.

Конверсия глицерина составляет 91,7 %. Выход молочной кислоты - 87,1 %. Баланс по углероду - 96,9 %. Мольное соотношение молочная кислота : глицерин = 10,5:1.

Пример 3. Синтез МГВ-3.

Реакцию осуществляют аналогично примеру 1 в присутствии 0,9 г (0,0062 моль) свежеприготовленного Cu2O при 235°С в течение 8 часов.

Конверсия глицерина составляет 95,8 %. Выход молочной кислоты - 91,0 %. Баланс по углероду - 96,6 %. Мольное соотношение молочная кислота : глицерин = 21,5:1.

Пример 4. Синтез МГВ-4.

Реакцию осуществляют аналогично примеру 1 в присутствии 0,9 г (0,0062 моль) свежеприготовленного Cu2O при 240°С в течение 8 часов.

Конверсия глицерина составляет 96,9 %. Выход молочной кислоты - 93,0 %. Баланс по углероду - 96,3 %. Мольное соотношение молочная кислота : глицерин = 30,1:1.

2. Синтез олигомерных сложных эфиров молочной кислоты и глицерина из смесей молочная кислота:глицерин:вода.

Синтез олигомерных сложных эфиров молочной кислоты и глицерина (олигоМГ) осуществляется по схеме II:

Пример 5. Синтез олигоМГ-1.

В колбу, снабженную насадкой Кляйзена с холодильником, помещают 200,0 г МГВ-1, 2,0 г катализатора SnO и нагревают в течение 8 часов, отгоняя воду. При этом температуру повышают с 100 до 180°С и понижают давление с 16000 до 400 Па. Полученный продукт растворяют в 50 мл хлороформа и переосаждают 120 мл метанола, отфильтровывают осадок и сушат при 60°С в вакуумном сушильном шкафу до постоянной массы.

Выход олигоМГ-1 - 49,3 %.

ИК-спектр: симметричные и ассиметричные колебания сложноэфирных С-О-С-групп при 1300-1059 см-1; валентные колебания карбонильных групп при 1754 см-1, валентные колебания СH2-групп при 2947 см-1, колебания ОН-групп около 3500 см-1.

ЯМР 1Н (δ, м.д.): 1,51 (-СН(СН3)ОН в конечных лактатных звеньях), 1,59 (-СН(СН3)О- в лактатных звеньях), 2,72 (-СН(СН3Н в конечных лактатных звеньях), 4,27 (-СН(СН3)ОН- в конечных лактатных звеньях), 4,35 (-ОСН2СН- в глицериновом сегменте), 5,14 (-СН2СНОСН2- в глицериновом сегменте), 5,17 (-СН(СН3)О- в лактатных звеньях).

Пример 6. Синтез олигоМГ-2.

Реакцию осуществляют аналогично примеру 5, помещая в колбу МГВ-2.

Выход олигоМГ-2 - 56,3 %.

ИК-спектр: симметричные и ассиметричные колебания сложноэфирных С-О-С-групп при 1298-1054 см-1; валентные колебания карбонильных групп при 1755 см-1, валентные колебания СH2-групп при 2940 см-1, колебания ОН-групп около 3500 см-1.

ЯМР 1Н (δ, м.д.): 1,51 (-СН(СН3)ОН в конечных лактатных звеньях), 1,59 (-СН(СН3)О- в лактатных звеньях), 2,72 (-СН(СН3Н в конечных лактатных звеньях), 4,27 (-СН(СН3)ОН- в конечных лактатных звеньях), 4,35 (-ОСН2СН- в глицериновом сегменте), 5,13 (-СН2СНОСН2- в глицериновом сегменте), 5,17 (-СН(СН3)О- в лактатных звеньях).

Пример 7. Синтез олигоМГ-3.

Реакцию осуществляют аналогично примеру 5, помещая в колбу МГВ-3.

Выход олигоМГ-3 - 62,1 %.

ИК-спектр: симметричные и ассиметричные колебания сложноэфирных С-О-С-групп при 1300-1050 см-1; валентные колебания карбонильных групп при 1756 см-1, валентные колебания СH2-групп при 2944 см-1, колебания ОН-групп около 3500 см-1.

ЯМР 1Н (δ, м.д.): 1,51 (-СН(СН3)ОН в конечных лактатных звеньях), 1,59 (-СН(СН3)О- в лактатных звеньях), 2,72 (-СН(СН3Н в конечных лактатных звеньях), 4,26 (-СН(СН3)ОН- в конечных лактатных звеньях), 4,35 (-ОСН2СН- в глицериновом сегменте), 5,13 (-СН2СНОСН2- в глицериновом сегменте), 5,17 (-СН(СН3)О- в лактатных звеньях).

Пример 8. Синтез олигоМГ-4.

Реакцию осуществляют аналогично примеру 5, помещая в колбу МГВ-4.

Выход олигоМГ-4 - 65,4 %.

ИК-спектр: симметричные и ассиметричные колебания сложноэфирных С-О-С-групп при 1298-1060 см-1; валентные колебания карбонильных групп при 1755 см-1, валентные колебания СH2-групп при 2945 см-1, колебания ОН-групп около 3500 см-1.

ЯМР 1Н (δ, м.д.): 1,50 (-СН(СН3)ОН в конечных лактатных звеньях), 1,59 (-СН(СН3)О- в лактатных звеньях), 2,71 (-СН(СН3Н в конечных лактатных звеньях), 4,26 (-СН(СН3)ОН- в конечных лактатных звеньях), 4,35 (-ОСН2СН- в глицериновом сегменте), 5,13 (-СН2СНОСН2- в глицериновом сегменте), 5,17 (-СН(СН3)О- в лактатных звеньях).

Таблица

Влияние молярных соотношений молочной кислоты и глицерина на свойства синтезированных олигомеров

Пример nМК/nГЛ,
моль/моль
Внещний вид продукта Выход продукта, % масс. MN, Да MW, Да Mw/MN
5 6:1 Вязкая жидкость желтоватого цвета 49,3 620 980 1,58
6 10:1 Вязкая жидкость желтоватого цвета 56,3 860 1340 1,56
7 20:1 Высоковязкая жидкость желтоватого цвета 62,1 1710 2280 1,33
8 30:1 Высоковязкая жидкость слегка желтоватого цвета 65,4 2500 3150 1,26

Способ получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина формулой

,

где n=2-10, со среднечисловыми молекулярными массами от 620 до 2500, отличающийся тем, что в качестве исходного вещества используется водный раствор глицерина, на первой стадии превращающийся в водную смесь молочной кислоты и глицерина в контролируемом мольном соотношении молочная кислота : глицерин = 6:1; 10:1; 20:1; 30:1 в присутствии высокоселективного гетерогенного медьсодержащего оксидного катализатора в количестве 1,5-3,0 мас.% от массы глицерина при нагревании до 220-240°С в течение 6-8 часов, с дальнейшим взаимодействием полученных смесей при нагревании до 140-180°С и остаточном давлении 4000-400 Па с образованием разветвленных олигоэфиров.



 

Похожие патенты:

Изобретение относится к способу производства полигидроксиалканоатов. Процесс получения полигидроксиалканоатов (ПГА) осуществляют из молекул летучих жирных кислот (ЛЖК), называемых прекурсорами, которые получены анаэробной ферментацией из ферментируемой биомассы.

Настоящее изобретение относится к способу эффективного разложения биоразлагаемой смолы. Описаны варианты способа разложения биоразлагаемой смолы.

Группа изобретений относится к биотехнологии, а именно к композиции молочной кислоты и ее применению для получения полимолочной кислоты и лактида. Композиция молочной кислоты, пригодная в качестве исходного сырья для получения полимолочной кислоты и лактида, включает молочную кислоту, 90%-ный водный раствор которой содержит метанол в концентрации не больше чем 70 м.д., пировиноградную кислоту в концентрации не больше чем 500 м.д., фурфураль в концентрации не больше чем 15 м.д., 5-гидроксиметилфурфураль в концентрации не больше чем 15 м.д., метиллактат в концентрации не больше чем 600 м.д., уксусную кислоту в концентрации не больше чем 500 м.д.

Настоящее изобретение заключается в способе получения молочной кислоты, где способ включает стадию удаления глицерина из содержащего глицерин в качестве примеси водного раствора молочной кислоты с помощью ионообменной смолы, причем на указанную ионообменную смолу адсорбируется глицерин, содержащийся в водном растворе молочной кислоты.

Изобретение относится к улучшенному способу получения акриловой кислоты, включающему в себя термолиз поли-3-гидроксипропионата, катализируемый по меньшей мере одним молекулярным органическим активным соединением, содержащим по меньшей мере один третичный атом азота, который имеет ковалентную связь с тремя отличающимися друг от друга атомами углерода этого молекулярного органического активного соединения, где среднемассовая относительная молекулярная масса Mw поли-3-гидроксипропионата составляет от 1000 до 2000000, и что это по меньшей мере одно молекулярное органическое активное соединение не содержит гетероатомов, кроме азота и кислорода, отличающихся от углерода и водорода, не содержит атомов азота, к которому ковалентно присоединены один или более одного атома водорода, содержит не более одного атома кислорода, к которому ковалентно присоединен атом водорода, не содержит атома кислорода, который имеет ковалентную двойную связь с одним из трех отличающихся друг от друга атомов углерода, не содержит ни остатка ароматического углеводорода, ни остатка замещенного ароматического углеводорода, имеет температуру кипения, которая при давлении 1,0133⋅105 Па составляет по меньшей мере 150°С и не более чем 350°С, и имеет температуру плавления, которая при давлении 1,0133⋅105 Па составляет ≤70°С.

Изобретение направлено на разработку биоразрушаемого материала с улучшенной способностью к разрушению в биологической среде, повышенной способностью к восстановлению формы после деформации материала и улучшенной эластичностью.

Изобретение относится к биоразрушаемому материалу. Биоразрушаемый материал, который представляет собой сшитый поперечными химическими связями продукт, образован мультивалентным соединением A, включающим 3 или более функциональных групп X, выбранных из группы, состоящей из гидроксильной группы, тиольной группы и аминогруппы, и мультивалентным соединением B, включающим 3 или более функциональных групп Y, выбранных из группы, состоящей из карбоксильной группы, изоцианатной группы и тиоизоцианатной группы, где поперечная химические связи сформированы с помощью реакции конденсации указанной функциональной группы (групп) X и указанной функциональной группы (групп) Y, где величина (y+z)/(x+z) имеет значение от 1,2 до 4,0, если MA≥MB, и величина (x+z)/(y+z) имеет значение от 1,2 до 4,0, если MA<MB, где x означает количество функциональных групп X, которые не вступили в реакцию конденсации с указанными функциональными группами Y, y означает число функциональных групп Y, которые не вступили в реакцию конденсации с указанными функциональными группами X, z означает число указанных сшивающих поперечных связей, MA означает среднемассовую молекулярную массу указанного мультивалентного соединения A и MB означает среднемассовую молекулярную массу указанного мультивалентного соединения B.
Настоящее изобретение относится к способу непрерывного получения сложных полиэфиров. Описан способ непрерывной полимеризации с раскрытием кольца мономеров циклического сложного эфира с образованием алифатических сложных полиэфиров на основе мономеров циклического сложного эфира, который включает следующие операции: a) непрерывную подачу мономера циклического сложного эфира и катализатора полимеризации в смесительный петлевой реактор непрерывного действия, причем реактор работает при эффективных для полимеризации условиях с образованием форполимеризованной реакционной смеси со степенью полимеризации между 40% и 90% при температуре от 100 до 240°С; b) непрерывный отвод форполимеризованной реакционной смеси из смесительного реактора непрерывного действия и непрерывная подача форполимеризованной реакционной смеси в реактор идеального вытеснения, причем реактор идеального вытеснения работает при условиях полимеризации, при которых реакционную смесь полимеризуют до степени полимеризации по меньшей мере 90%, с образованием полимера при температуре от 100 до 240°С; c) непрерывный отвод полимера из реактора идеального вытеснения.

Настоящее изобретение относится к биоразлагаемому смешанному алифатически-ароматическому сложному полиэфиру, пригодному для экструзионного покрытия, содержащему звенья, образованные из по меньшей мере дикарбоновой кислоты и по меньшей мере диола, с длинноцепочечными разветвлениями, и, по существу, свободному от геля, характеризующемуся вязкостью при сдвиге от 800 до 1600 Па*с, константой термостойкости менее чем 1,5*10-4, прочностью расплава от 2 до 4,5 г и относительным удлинением при разрыве более 30.

Настоящее изобретение относится к способу термической стабилизации полимера, получаемого полимеризацией с раскрытием кольца, а также к способу получения полигидроксикислот, способу анализа остатков металла в полимере и к полилактиду.

Настоящее изобретение касается сложных эфиров олигогидроксикарбоновых кислот, косметических и фармацевтических средств, которые содержат эти сложные эфиры, а также применения этих сложных эфиров в качестве загущающих средств, особенно для композиций, содержащих поверхностно-активные вещества.

Изобретение относится к производству органических продуктов из возобновляемого сырья, в частности к способам переработки лактата аммония, полученного микробиологическим синтезом, в молочную кислоту и ее сложные эфиры (алкиллактататы).

Изобретение относится к способу переработки лактата аммония в молочную кислоту и ее сложные эфиры. Предложенный способ осуществляется путем контакта водного раствора лактата аммония с гидроксилсодержащим соединением в вертикальном массообменном аппарате при повышенных температуре и давлении, отводом сопутствующих продуктов реакции, главным образом, с потоком пара и целевых продуктов, главным образом, с потоком жидкости.
Изобретение относится к пищевой промышленности и касается получения пищевой добавки, предназначенной для использования в пищевых продуктах, преимущественно для обогащения железом.

Изобретение относится к фармацевтической композиции, повышающей эмбриональный гемоглобин пациента или ускоряющей дифференцировку клеток, содержащей эффективное количество бутирата предшественника лекарственного средства формулы I, в которой А и D независимо друг от друга выбраны из группы, включающей водород, карбоциклилалкоксиалкил или С(1-4) прямой или разветвленный алкил, С(2-4) прямой или разветвленный алкенил или алкинил, которые могут быть независимо замещены гидрокси, алкокси, карбоксиалкилом, алкиламидом и т.д., при условии, что А и D не являются одновременно водородом, R представляет кислород, NH, NC(1-5) алкил с прямой или разветвленной цепью или NHС(2-5)алкенил с прямой или разветвленной цепью, любой из которых может быть необязательно замещен остатком карбоцикла или гетероцикла, Z представляет водород, С(1-4) алкил с прямой или разветвленной цепью, С(2-4) алкенил или алкинил с прямой или разветвленной цепью, карбоциклический или гетероциклический остаток и т.д., и каждый стереогенный атом углерода может быть R или S конфигурации, и фармацевтически приемлемый адъювант или носитель.

Изобретение относится к органическому синтезу, конкретно к усовершенствованному способу получения эфиров молочной кислоты, которые нашли применение в электронной промышленности, при производстве синтетического каучука, в лакокрасочной промышленности.
Наверх