Способ определения поглощенной дозы гамма-излучения

Изобретение относится к области химической дозиметрии и может использоваться при косвенном определении поглощенной дозы гамма-излучения. Способ определения поглощенной дозы гамма-излучения заключается в измерении величины светопропускания дозиметрической жидкости от волнового числа и расчете поглощенной дозы гамма-излучения по установленной градуировочной зависимости величины светопропускания при постоянном волновом числе, при этом в качестве дозиметрической жидкости используют двухфазную систему, состоящую из дихлорбензола и элементарной серы в соотношении компонентов, соответствующем насыщению серы в растворителе, мас.%: дихлорбензол 98,0-99,0, элементарная сера 1,0-2,0. Технический результат – повышение чувствительности и точности определения поглощенной дозы гамма-излучения в диапазоне 0,1-2,0 Мрад, обеспечение стабильности показаний светопропускания. 2 ил., 2 табл.

 

Область техники, к которой относится изобретение.

Изобретение относится к области химической дозиметрии и может использоваться при определении поглощенной дозы гамма-излучения.

Техническая проблема, на решение которой направлено изобретение.

Определение поглощенной дозы гамма - излучения при проведении экспериментальной деятельности в области радиационных исследований, как правило, осуществляется дистанционно с помощью системы датчиков, размещаемых в зоне радиоактивного облучения, которые требуют прокладки кабельных линий или извлечения после облучения через определенное время. Прокладка кабельных линий к детекторам требует временных и материальных затрат. В случае неопределенного места расположения источника радиоактивного облучения или его движения установка детекторов с кабельными линиями бывает принципиально невозможной. В этом случае, как правило, устанавливаются дозиметры в местах наиболее вероятного размещения источника радиоактивного загрязнения.

В подобных условиях наиболее целесообразно использование химических дозиметров, не требующих прокладки кабельных линий, когда имеется возможность в оперативном порядке менять место их расположения в зависимости от радиационной обстановки. Принцип их действия основан на изменении свойств, в т.ч. светопропускания (оптической плотности) дозиметрической жидкости на основе органических и неорганических веществ.

Уровень техники.

Аналог.

Так, широко известен способ определения поглощенной дозы гамма-излучения с помощью дозиметра Фрикке, где в качестве дозиметрической жидкости используется ферросульфатная система, представляющая собой (1-5)·10-3 М водный раствор сернокислого закисного железа в 0,4 М H2SO4, содержащий 10-3 моль/л NaCl и насыщенный воздухом [см. «Современная радиационная химия. Основные положения. Экспериментальная техника и методы» под ред. Пикаева А.К., М.: «Наука», 1985 г. - с.297.]. Под действием ионизирующего излучения на подобный раствор двухвалентное железо окисляется до трехвалентного, концентрация которого и служит мерой поглощенной дозы. Определение концентрации ионов Fe3+, образующихся при радиолизе ферросульфатной системы проводят различными методами: потенциометрическим, колориметрическим и прямым спектрофотометрическим в ультрафиолетовой области спектра с достаточной степенью точности (~ 2%). Однако, диапазон использования ферросульфатного дозиметра находится в диапазоне 0,004 - 0,04 Мрад (для ДФС-0,004/0,04), верхний предел которого ограничивается израсходованием кислорода, присутствующего в растворе. Кроме того, отсутствует стабильность оптической системы дозиметра, насыщенного воздухом, при стоянии вне облучения за счет самопроизвольного медленного окисления, что требует приготовления дозиметрической жидкости непосредственно перед облучением.

Прототип.

Наиболее близким к заявляемому способу техническим решением того же назначения и в качестве прототипа является по совокупности признаков способ, реализованный в рецептуре дозиметрической жидкости [см. Авт. свид. СССР №1500118, кл. G 01T 1/04]. Суть способа заключается в том, что поглощенную дозу облучения определяют по величине пропускания облученной дозиметрической жидкости от волнового числа из градуировочной кривой зависимости дозы облучения от пропускания (до 4 Мрад); или по величине пропускания при постоянном волновом числе из градуировочной кривой зависимости дозы облучения от волнового числа (до 1000 Мрад). В качестве дозиметрической жидкости используют дибутилфталат (ДБФ). Реализация этого способа позволяет с помощью одной дозиметрической жидкости осуществить измерение доз облучения в интервале малых и больших доз. Недостатком способа является наличие пост - радиационного эффекта в интервале облучения до 4 Мрад, что требует выдержки ампулы с ДБФ после облучения не менее 20 ч.

Определение поглощенной дозы излучения из градуировочной зависимости измерения относительной вязкости дозиметрической жидкости от дозы облучения на основе ДБФ и его смеси с эпоксидиановой смолой (ЭДС) показало отсутствие пост - радиационного эффекта, однако заявлена точность измерения ± 10% [см. Авт. свид. СССР №1575726, кл. G 01 T 1/02].

Технический результат изобретения.

Техническим результатом предлагаемого способа является повышение чувствительности и точности определения поглощенной дозы гамма-излучения в диапазоне 0,1 - 2,0 Мрад при отсутствии пост - радиационного эффекта и обеспечение стабильности показаний светопропускания дозиметрической в течение длительного времени.

Способ достижения технического результата.

Указанный результат достигается тем, что в предлагаемом способе определения поглощенной дозы гамма-излучения, заключающемся в измерении величины светопропускания дозиметрической жидкости от волнового числа и расчете поглощенной дозы гамма-излучения по установленной градуировочной зависимости величины светопропускания при постоянном волновом числе, в качестве дозиметрической жидкости используют двухфазную систему, состоящую из дихлорбензола (ДХБ) и элементарной серы (S) в соотношении компонентов, соответствующем насыщению S в растворителе, масс.%:

- дихлорбензол - 98,0 - 99,0%

- элементарная сера - 1,0 - 2,0%.

Сущность изобретения

Предлагаемый способ реализуется путем определения зависимости величины светопропускания облученной дозиметрической жидкости от волнового числа и по величине пропускания при постоянном волновом числе определяют дозу облучения в интервале 0,1 - 2,0 Мрад из градуировочного графика.

Сущность изобретения заключается в том, что для повышения чувствительности и точности определения поглощенной дозы гамма-излучения в качестве дозиметрической жидкости используется двухфазная система, состоящая из ДХБ и элементарной S в соотношении компонентов, соответствующем насыщению S в растворителе, мас.%:

- дихлорбензол - 98,0 - 99,0

- элементарная сера - 1,0 - 2,0.

Определение зависимостей светопропускания от поглощенной дозы гамма-излучения при фиксированном волновом числе было исследовано для образцов, состав которых приведен в таблице 1.

Таблица - 1. Состав анализируемых органических жидкостей в смеси с элементарной серой, подверженных облучению

Содержание элементарной серы, мг/100 мл жидкости
Наименование
жидкости
0,0 0,02 0,4 0,8 1,2 1,6 2,0 (нас.)
Скипидар +
Бензол +
Дихлорбензол + + + + + + +
Хлорбензол +
Ксилол +
Четыреххлористый углерод +
Толуол +
Дихлорэтан + +

Оценка возможности применения указанных веществ в смеси с элементарной S в качестве дозиметрической жидкости проведена по следующим критериям:

- радиочувствительность в диапазоне 280 - 400 нм;

- отсутствие пост - радиационного эффекта и стабильность показаний светопропускания в течение длительного времени при отсутствии возможности проводить измерения непосредственно после облучения;

- отсутствие значимой летучести дозиметрической жидкости, снижающей светопропускание и искажающей, таким образом, результаты измерений.

Указанным критериям наиболее полно соответствует ДХБ, для которого были проведены исследования в различных массовых соотношениях с элементарной S, в результате чего была выбрана

двухфазная система, состоящая из ДХБ и элементарной S в соотношении

компонентов, соответствующем насыщению S в растворителе, мас.%:

- дихлорбензол - 98,0 - 99,0

- элементарная сера - 1,0 - 2,0.

При осуществлении предлагаемого способа получают градуировочные зависимости светопропускания от дозы облучения ДХБ+Sнас.. Для этого помещают ДХБ+Sнас. в стеклянные бюксы с притертыми крышками, которые затем должны быть облучены набором доз до 2 Мрад на гамма-облучательной установке. Для эксперимента применена облучательная установка «Исследователь», имеющая в своем составе 36 источников излучения 60Co. Поглощенная доза излучения в месте расположения бюксов с дозиметрическими жидкостями рассчитывается в соответствии с алгоритмом [см. В.Ф. Козлов «Справочник по радиационной безопасности» , М.: Атомиздат, 1977, с.186.]. После облучения ДХБ+Sнас. переливается из бюксов в измерительные кварцевые кюветы спектрофотометра, работающего в области видимого и ультрафиолетового света (СФ-26). Кюветы с ДХБ+Sнас. для измерения зависимости светопропускания от поглощенной дозы гамма-излучения при постоянном волновом числе (λ=390нм) помещают в измерительный канал спектрофотометра и осуществляют измерения относительно необлученного ДХБ+Sнас.. Результаты зависимости светопропускания ДХБ+Sнас и его логарифма от поглощенной дозы гамма-излучения приведены в таблице 2.

Таблица 2 - зависимости светопропускания ДХБ+Sнас и его логарифма от поглощенной дозы гамма-излучения

Время экспозиции Спуск-подъем 30с 1 мин 5 мин 10 мин 20 мин 30 с 1 ч
Доза погл, Мрад 0,005 0,0017 0,03 0,17 0,33 0,7 1 2
Светопропускание Т,% 96,7 93,7 88,0 73,3 63,0 42,0 28,5 8,5
lgT 1,98 1,97 1,94 1,88 1,8 1,62 1,45 0,93

На фиг.1 приведена графическая зависимость светопропускания ДХБ+Sнас. от . времени экспозиции в соответствии с расчетной поглощенной дозой гамма-излучения, на фиг.2 - градуировочный график зависимости светопропускания ДХБ+Sнас. от времени экспозиции (поглощенной дозы гамма-излучения) в полулогарифмическом масштабе.

Предлагаемый способ по сравнению с известными имеет следующие преимущества.

Облучение дозиметрической жидкости на основе ДХБ+Sнас. не имеет пост- радиационного эффекта во всем диапазоне поглощенной дозы гамма-излучения (0,1 - 2,0 Мрад), что подтверждено наблюдениями в течение более 1 месяца.

Погрешность измерений, рассчитанная по линейной зависимости, приведенной на градуировочном графике (фиг.2) не превышает 5% при доверительной вероятности 0,95.

Указанный способ целесообразно использовать при дозиметрии на объектах с затрудненным доступом к источнику излучения, на движущихся объектах, исключающих возможность прокладки кабельных линий.

Обоснование соответствия критерию охраноспособности «новизна».

Предлагаемое техническое решение является новым, поскольку в общедоступных источниках нет сведений о способе определения поглощенной дозы излучения с помощью химического дозиметра на основе двухфазной системы, включающей ДХБ+Sнас. в соотношении в соотношении

компонентов, соответствующем насыщению S в растворителе, мас.%:

- дихлорбензол - 98,0 - 99,0

- элементарная сера - 1,0 - 2,0.

Обоснование соответствия критерию охраноспособности «изобретательский уровень».

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленное соотношение компонентов в качестве дозиметрической жидкости при определении поглощенной дозы гамма-излучения, приводит к повышению радиочувствительности органических веществ, стабильности показаний в течение длительного времени и снижению погрешности при проведении измерений.

Обоснование соответствия критерию охраноспособности «промышленная применимость».

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы стандартное оборудование, приспособления и материалы широко распространенной технологии изготовления химических дозиметров.

Результаты экспериментальной проверки реализации способа.

Предлагаемый способ реализован в лабораторных условиях. При проведении измерений по разработанному способу в качестве источника ионизирующего излучения использовался кобальт-60. Измерения проведены в интервале доз от 0,1 - 2,0 Мрад.

Обоснование технико-экономической эффективности изобретения.

Технико-экономическая эффективность предложенного способа заключается в повышении радиочувствительности органических веществ в смеси с элементарной серой, стабильности показаний в течение длительного времени и снижении погрешности при проведении измерений.

Способ определения поглощенной дозы гамма-излучения, заключающийся в измерении величины светопропускания дозиметрической жидкости от волнового числа и расчете поглощенной дозы гамма-излучения по установленной градуировочной зависимости величины светопропускания при постоянном волновом числе, отличающийся тем, что в качестве дозиметрической жидкости используют двухфазную систему, состоящую из дихлорбензола и элементарной серы в соотношении компонентов, соответствующем насыщению серы в растворителе, мас.%:

Дихлорбензол 98,0-99,0
Элементарная сера 1,0-2,0



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к способам корректировки и стабилизации измерительных параметров сцинтилляционных детекторов ионизирующих излучений (СДИ).

Группа изобретений относится к позитронно-эмиссионной томографии (PET). Детектор фотонов содержит массив датчиков из расположенных в плоскости оптических датчиков, четыре идентичных сцинтилляционных кристаллических стержня, первый слой со светоделительным участком, второй слой со светоделительным участком, блок обработки сигналов, соединенный с массивом датчиков, выполненный с возможностью оценивать оценочную глубину взаимодействия одного из четырех идентичных сцинтилляционных кристаллических стержней по детектированному событию на основании соотношения воспринимаемой люминесценции двух из четырех идентичных сцинтилляционных кристаллических стержней, расположенных диагонально друг к другу и обращенных к одному из четырех идентичных сцинтилляционных кристаллических стержней.

Группа изобретений относится к детектору излучения. Детектор излучения содержит преобразующий элемент для преобразования падающего излучения в электрические сигналы; схему считывания для обработки упомянутых электрических сигналов; нагревательное устройство, отделенное от схемы считывания, для нагревания преобразующего элемента, причем нагревательное устройство содержит элемент Пельтье, и причем источник тепла упомянутого элемента Пельтье ориентирован к преобразующему элементу, а его теплоотвод ориентирован к схеме считывания.

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком.

Группа изобретений относится к области скважинных инструментов. Устройство для обнаружения гамма-излучения в стволе скважины содержит сцинтилляционный кристалл и трубчатый фотоэлектронный умножитель, размещенные в общем кожухе или в индивидуальных кожухах.

Изобретение относится к области регистрации фотонного излучения и касается блока детекторов для измерения фотонного излучения. Блок детекторов содержит первую разделенную вакуумированным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания, и вторую разделенную газонаполненным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.

Изобретение относится к области регистрации ионизирующего излучения и касается способа регистрации распределения интенсивности мягкого рентгеновского излучения при наличии в спектре паразитного видимого и инфракрасного излучения.

Изобретение относится к области вычислительной техники для восстановления данных от устройства обнаружения излучения, которые были подвержены наложению импульсов.

Изобретение относится к области радиографической интроскопии, точнее к гамма-радиографической интроскопии массивных деталей и заготовок из тяжелых металлов. Способ гамма-радиографической интроскопии дополнительно содержит этапы, на которых располагают детекторы на минимальном расстоянии между собой, а изображение просвечиваемого объекта формируют путем накопления координат взаимодействий с тонким координатным детектором-рассеивателем тех прошедших через просвечиваемый объект гамма-квантов, которые одновременно оставили в обоих детекторах суммарную энергию, равную исходной, причем независимо от места поглощения в толстом детекторе полного поглощения гамма-квантов, комптоновски рассеянных тонким детектором.
Наверх