Способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с диборидом титана

Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с диборидом титана, и может использоваться в качестве конструкционных материалов в авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения. Способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с диборидом титана, включает получение расплава алюминия с температурой выше температуры ликвидус с борсодержащими частицами, при этом получают расплав с температурой на 150-200°С выше температуры ликвидус, содержащий в качестве борсодержащих частиц 30-40 об.% частиц диборида титана с размером 1-40 мкм, а также расплав алюминия без частиц диборида титана с температурой на 150-200°С выше температуры ликвидус, который первым заливают в подогреваемую горизонтальную изложницу центробежного литья, вращающуюся с коэффициентом гравитации 70-140, с формированием первого слоя металла на поверхности изложницы, затем заливают в изложницу расплав защитного флюса и формируют следующие слои металла, последовательно заливая на расплав флюса расплав сплава алюминия, содержащего частицы диборида титана, затем расплав сплава алюминия без частиц диборида титана, затем расплав алюминия, содержащего частицы диборида титана, и затем расплав алюминия без частиц диборида титана, причем заливку расплава последующих слоев металла на расплав флюса начинают после охлаждения предыдущего слоя металла до температуры солидус. Техническим результатом изобретения является получение крупных полых цилиндрических заготовок нейтронно-поглощающего материала на основе сплава алюминия, содержащего слои металла с частицами диборида титана, равномерно распределенными по их толщине. 3 з.п. ф-лы.

 

Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с диборидом титана, и может использоваться в качестве конструкционных материалов в авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения.

Известен способ получения упрочненных сплавов на основе алюминия, включающий введение в расплав алюминиевой основы лигатуры в виде стержней из смеси порошков алюминия и модифицирующей добавки диборида титана, причем содержание порошка диборида титана с размером частиц 1-5 мкм в лигатуре составляет 5 мас. %, а полученные стержни вводят в расплав алюминия, разогретый до 720°С, при одновременном воздействии на расплав ультразвукового поля. Известный способ позволяет повысить прочность сплава и обеспечивает равномерность распределения диборида титана в объеме алюминиевой матрицы.

(RU 2542044, С22С 1/03, С22С 1/06, опубликовано 20.02.2015)

Недостатком известного способа является трудность получения крупных заготовок, предназначенных для прокатки, в том числе получение слоистого материала, позволяющего повысить общее содержание нейтронно-поглощающего бора в изделии.

Известен способ получения тонколистового нейтронно-поглощающего проката из слитков борсодержащего алюминиевого сплава, включающий приготовление алюминиевого расплава, введение бора в количестве от 2 до 2,8 мас. % в виде боридных частиц, получение слитка путем кристаллизации расплава, горячую прокатку, промежуточный отжиг, холодную прокатку, причем в алюминиевый расплав также вводят от 1,8 до 2,5 мас. % меди и от 1,4 до 2,2 мас. % марганца, слиток подвергают горячей прокатке при температуре 400-450°С, а после холодной прокатки проводят отжиг при температуре 360-400°С.

(RU 2630185, C22F 1/04; С22С 21/12, опубликовано 05.09.2017)

Недостатком известного способа является низкая концентрация борсодержащих частиц в алюминиевой матрице.

Известен способ изготовления композиционного материала на основе алюминиевого сплава, армированного керамикой, включающий объединение расплава алюминиевого сплава с расплавом фторидного флюса в инертной атмосфере, причем флюс предварительно смешивают с керамической фазой - диборидом титана и проводят плавление смеси в инертной атмосфере совместно с алюминиевым сплавом для диспергирования в нем диборида титана. Известный способ позволяет получить дисперсию титан-боридной керамической фазы в сплаве с размером от микрона до нанометра и в количестве до 60 об.%.

(RU 2159823, С22С 21/10, С22С 21/06, опубликовано 27.11.2000)

Недостатком известного способа является высокая трудоемкость и невозможность получения нейтронно-поглощающего материала, содержащего слои с диборидом титана.

Наиболее близким является способ получения нейтронно-поглощающего материала на основе сплава алюминия, содержащего слои с различной концентрацией борсодержащих частиц (карбида бора), включающий изготовление плоского композита из сплава на основе алюминия и кремния, содержащего частицы карбида бора с размером зерен 10-30 мкм в концентрации 10-55 мас. %, нагрев композита выше температуры ликвидус, выдержку расплава в защитной атмосфере при давлении газа 1100-1300 бар и воздействии вибрации, охлаждение, закалку и многократную горячую прокатку, или ковку, или экструзию. При воздействии вибрации в расплаве происходит всплывание частиц карбида бора и обогащение им до 65-85 мас. % верхнего слоя расплава с формированием слоев с различным содержанием карбида бора.

(DE 102011120988, С22С 21/02, опубликовано 13.06.2013)

Недостатком известного способа является невозможность его использования для получения нейтронно-поглощающего материала в виде крупных полых цилиндрических заготовок, а также невозможность получения нескольких слоев с равномерным распределением частиц диборида титана по их сечению.

Задачей и техническим результатом изобретения является получение крупных полых цилиндрических заготовок нейтронно-поглощающего материала на основе сплава алюминия, содержащего слои металла с частицами диборида титана, равномерно распределенным по их толщине.

Технический результат достигают тем, что способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с диборидом титана, включает получение расплава алюминия с температурой выше температуры ликвидус с борсодержащими частицами, при этом получают расплав с температурой на 150-200°С выше температуры ликвидус, содержащий в качестве борсодержащих частиц 30-40 об. % частиц диборида титана с размером 1-40 мкм, а также расплав алюминия без частиц диборида титана с температурой на 150-200°С выше температуры ликвидус, который первым заливают в подогреваемую горизонтальную изложницу центробежного литья, вращающуюся с коэффициентом гравитации 70-140, с формированием первого слоя металла на поверхности изложницы, затем заливают в изложницу расплав защитного флюса, и формируют следующие слои металла, последовательно заливая на расплав флюса расплав сплава алюминия, содержащего частицы диборида титана, затем расплав сплава алюминия без частиц диборида титана, затем расплав алюминия, содержащего частицы диборида титана, и затем расплав алюминия без частиц диборида титана, причем заливку расплава последующих слоев металла на расплав флюса начинают после охлаждения предыдущего слоя металла до температуры солидус.

Технический результат также достигают тем, что заливку расплава ведут в защитной атмосфере аргона, который подают в изложницу с расходом 0,3-0,7 м3/ч, в качестве расплава алюминия используют расплавы технического алюминия, а также его литейные сплавы с кремнием, дополнительно содержащие 0,4-0,5 мас. % титана, 0,08-0,12 мас. % бора, 0,03-0,05 мас. % бериллия, и каждый слой металла легированного алюминия и алюминия с диборидом титана заливают толщиной не менее Змм, а расплав флюса не менее 3-4 мм.

Достижение поставленного технического результата можно проиллюстрировать следующим примером.

Известными способами получают расплав литейного легированного сплава алюминия с кремнием с температурой 900-950°С (на 150-200°С выше температуры ликвидус), в который вводят лигатуру AlTiB 5/1, обеспечивающую содержание с расплаве титана 0,45 мас. % и бора 0,10 мас. %, а также лигатуру AlBe5, обеспечивающую содержание бериллия 0,03-0,05 мас. %). Введение лигатуры AlBe5 уменьшает окисление расплава, а введение лигатуры AlTiB 5/1 эффективно измельчает зерна алюминиевых сплавов, что способствует улучшению механических свойств и уменьшению газовой пористости.

Также готовят расплав технического алюминия с температурой 1000°С (на 250°С выше температуры ликвидус), содержащий 30-40 об. % частиц диборида титана с размером 1-40 мкм. Оптимальным является получения расплава алюминия с добавкой диборида титана непосредственно перед введением в изложницу, например, путем расплавления предварительно полученного методом порошковой металлургии полуфабриката, содержащего частицы диборида титана.

При осуществлении способа по изобретению используют известные составы флюсов для защиты зеркала расплава алюминия, например, на основе фторида кальция.

Расплав литейного сплава алюминия, легированного титаном, бором и бериллием, заливают в подогреваемую центробежную машину с горизонтальной осью вращения.

Рабочую поверхность используемой подогреваемой до температуры более 200°С горизонтальной изложницы центробежного литья длиной 3 м и внутренним диаметром 300 мм предварительно покрывают противопригарным покрытием.

Первый слой нейтронно-поглощающего материала по изобретению толщиной 3,0 мм формируют путем заливки во вращающуюся горизонтальную изложницу расплава легированного литейного алюминиевого сплава без частиц диборида титана с температурой 900 °С, что на 200°С выше температуры ликвидус. Заливку расплавов металла ведут в защитной атмосфере аргона, который подают в изложницу с расходом 0,3-0,7 м3/ч.

Число оборотов изложницы п определяют по известной формуле:

где: n - число оборотов в сек;

K - коэффициент гравитации;

D - диаметр изложницы, м.

Для K=100 и D=0,1 м число оборотов изложницы n=22,3 об/с.

После заливки первого слоя металла, в изложницу заливают расплав защитного флюса, который формирует на поверхности первого слоя металла равномерный защитный слой толщиной ≈3 мм.

После охлаждения металла первого слоя до температуры солидус (≈750°С) в изложницу на расплавленный флюс заливают подготовленный расплав алюминия, содержащий частицы диборида титана, для формирования второго нейтронно-поглощающего слоя металла толщиной 3 мм.

После формирования слоя защитного флюса на поверхности второго слоя металла и охлаждения металла до температуры солидус в изложницу заливают расплав легированного сплава алюминия без частиц бора, а затем последовательно после формирования слоя защитного флюса на поверхности сформированного слоя металла и его охлаждения до температуры солидус заливают расплав алюминия, содержащего частицы диборида титана, и расплав легированного алюминиевого сплава без частиц диборида титана.

Выбранные температурные режимы осуществления способа по изобретению в сочетании с режимом вращения изложницы обеспечивают формирование слоев металла одинаковой толщины, их направленную кристаллизацию и равномерное распределение диборида титана по сечению слоя металла и длине изложницы.

Результатом осуществления способа по изобретению был получен нейтронно-поглощающий материал на основе алюминия и диборида титана в виде крупной полой цилиндрической заготовки, содержащей слои с диборидом титана.

Для получения листов полученную заготовку разрезают по средней линии, разгибают, выпрямляют и прокатывают на лист необходимой толщины при температуре 400-450°С на лист необходимой толщины. Допускается холодная прокатка с последующим отпуском при 360-400°С. Полученный лист может быть использован в конструкциях защиты от нейтронного излучения и в качестве конструкционного материала в авиации и других областях машиностроения, где требуется материал с низким удельным весом и высокой прочностью.

1. Способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с диборидом титана, включающий получение расплава алюминия с температурой выше температуры ликвидус с борсодержащими частицами, отличающийся тем, что получают расплав с температурой на 150-200°С выше температуры ликвидус, содержащий в качестве борсодержащих частиц 30-40 об.% частиц диборида титана с размером 1-40 мкм, и расплав алюминия без частиц диборида титана с температурой на 150-200°С выше температуры ликвидус, который первым заливают в подогреваемую горизонтальную изложницу центробежного литья, вращающуюся с коэффициентом гравитации 70-140, с формированием первого слоя металла на поверхности изложницы, затем заливают в изложницу расплав защитного флюса и формируют следующие слои металла, при этом последовательно заливают на расплав флюса расплав сплава алюминия, содержащего частицы диборида титана, затем расплав сплава алюминия без частиц диборида титана, затем расплав алюминия, содержащий частицы диборида титана, и затем расплав алюминия без частиц диборида титана, причем заливку расплава последующих слоев металла на расплав флюса начинают после охлаждения предыдущего слоя металла до температуры солидус.

2. Способ по п. 1, отличающийся тем, что заливку расплава ведут в защитной атмосфере аргона, который подают в изложницу с расходом 0,3-0,7 м3/ч.

3. Способ по п. 1, отличающийся тем, что каждый слой металла легированного алюминия и алюминия с диборидом титана заливают толщиной не менее 3 мм, а расплав флюса не менее 3-4 мм.

4. Способ по п. 1, отличающийся тем, что в качестве расплава алюминия используют расплавы технического алюминия или его литейного сплава с кремнием, дополнительно содержащего 0,4-0,5 мас.% титана, 0,08-0,12 мас.% бора, 0,03-0,05 мас.% бериллия.



 

Похожие патенты:

Изобретение относится к металлургии, а именно к обработке кристаллизующегося металла давлением, в частности к получению слитков из деформируемых алюминиевых сплавов.

Изобретение относится к алюминиевым сплавам, используемым в промышленности автотранспортных средств. Способ получения изделия из алюминиевого сплава включает формование листа из дисперсионно-твердеющего термически обрабатываемого алюминиевого сплава для получения из алюминиевого сплава формованного изделия, имеющего одну или более частей; нагревание по меньшей мере одной части формованного изделия из алюминиевого сплава, имеющего одну или более частей, два или более раз до температуры термообработки от 250 до 300°С при скорости нагревания от 10 до 220°С/с и поддерживание температуры каждой термообработки в течение 60 с или менее, причем по меньшей мере одна часть формованного изделия из алюминиевого сплава содержит дисперсионно-твердеющий термически обрабатываемый алюминиевый сплав.

Изобретение относится к получению и применению листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, называемой еще «неокрашенный кузов», причем лист имеет предел текучести Rp0i2 не ниже чем 60 МПа, и удлинение при одноосном растяжении Ag0, не ниже чем 34%.Способ получения листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, включает вертикальную непрерывную или полунепрерывную разливку сляба, имеющего состав, в мас.%: Si: 0,15-0,50; Fe: 0,3-0,7; Cu: 0,05-0,10; Mn: 1,0-1,5; другие элементы <0,05 каждый и <0,15 в общем, остальное алюминий, и обдирку сляба, гомогенизацию при температуре, по меньшей мере, 600°С в течение, по меньшей мере, 5 часов с последующим регулируемым охлаждением до температуры 550°С-450°С за по меньшей мере 7 часов, затем охлаждением до комнатной температуры за по меньшей мере 24 часа, нагрев до температуры 480°С-530°С с подъемом температуры за, по меньшей мере, 8 часов, горячую прокатку, охлаждение, холодную прокатку и отжиг при температуре, по меньшей мере, 350°С ,упрочняющую обработку, со степенью деформации между 1% и 10%,химическое травление механически нарушенного слоя.

Изобретение относится к алюминиевым сплавам, предназначенным для изготовления изделий сложной формы, в частности банок и бутылок. Алюминиевый сплав представляет собой сплав с кристаллографической структурой, содержащей: меньшее или равное 10 об.% количество взятых вместе компонентов текстуры Госса и перевернутой текстуры Госса; меньшее или равное 20 об.% количество компонентов текстуры латуни; большее или равное 10 об.% количество взятых вместе компонентов S-текстуры и текстуры меди; микроструктуры алюминия в виде случайных или второстепенных ориентаций - остальное, при этом отношение плотности α-волокон низкого уровня к плотности α-волокон высокого уровня меньше или равно 0,40; а отношение плотности α-волокон низкого уровня к плотности β-волокон меньше или равно 0,15.

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым коррозионностойким алюминиевым сплавам, применяемым в качестве конструкционных материалов для элементов конструкций, в том числе сварных, работающих в контакте с агрессивными средами.

Изобретение относится к формуемым и прочным алюминиевым сплавам для изготовления упаковочной продукции, такой как бутылки и банки. Алюминиевый сплав содержит, мас.%: 0,1-1,6 Mn, 0,1-0,6 Mg, 0,45-1,0 Cu, 0,2-0,7 Fe, 0,10-0,6 Si, до 0,3 Cr, до 0,6 Zn, до 0,2 Ti, <0,05 для каждого элемента-примеси, <0,15 для всех элементов-примесей, остальное - Al.

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения изделий, в том числе сварных конструкций, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах.
Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка.

Изобретение относится к получению материалов с металлической матрицей из алюминия или его сплавов, содержащих гадолиний, и может быть использовано в атомной энергетике для изготовления нейтронно-поглощающих экранов и перегородок, транспортно-упаковочных контейнеров.

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида металла-катализатора, восстановления оксида металла-катализатора до металла в среде водорода, выращивания углеродных наноструктур на поверхности покрытых металлом-катализатором частиц алюминия из газовой фазы газообразных углеводородов и спекания полученной шихты горячим прессованием.

Изобретение относится к области порошковой металлургии, в частности к спеченным твердым сплавам на основе карбида вольфрама. Может использоваться в качестве материала режущего инструмента для лезвийной обработки труднообрабатываемых сталей и сплавов, а также для изготовления иных износостойких изделий.

Изобретение относится к области металлургии литейных сплавов на основе алюминия и может быть использовано для производства алюминиевых сплавов на основе системы Al-Si, дополнительно легированных магнием, медью, марганцем, стронцием и другими элементами.

Изобретение относится к металлургии, а именно к обработке кристаллизующегося металла давлением, в частности к получению слитков из деформируемых алюминиевых сплавов.

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на боковых стенках и верхней крышке которой выполнено теплозащитное покрытие, погружение нижнего конца патрубка, установленного в днище камеры, в тигель плавильной печи с расплавом, создание вакуума для заполнения герметичной камеры расплавом, перемещение герметичной камеры с расплавом к литейной форме, введение нижнего конца патрубка герметичной камеры в металлоприемник литейной формы и заливку в нее расплава путем подачи под давлением инертного газа в герметичную камеру, при этом предварительный нагрев герметичной камеры осуществляют до температуры не ниже (450÷500)°С посредством кондуктивного и лучистого теплообмена с расплавом металла в тигле плавильной печи, нагретым до температуры не ниже 700°С, при этом патрубок герметичной камеры выполняют из титанового сплава с покрытием из нитрида титана на внешних боковых стенках, в процессе заполнения герметичной камеры расплавом в нее непрерывно подают порошок тугоплавкого соединения с одновременным механическим перемешиванием, а после заполнения герметичной камеры расплавом его дополнительно перемешивают в течение не менее 60 с.

Настоящее изобретение относится к области порошковой металлургии, в частности к шихте для получения износостойкого материала методом СВС, включающей порошок титана, углеродсодержащий компонент - сажу, порошок меди, причем компоненты взяты в следующем соотношении, мас.%: 54-67 порошок титана, 9-13 сажа, 20-37 порошок меди.

Изобретение относится к производству сплавов для постоянных магнитов, может быть использовано для изготовления высокоэнергетических постоянных магнитов системы (Nd, Pr)-Fe-B.

Изобретение относится к области металлургии, в частности к получению никеле-титановых сплавов в вакуумных индукционных плавильных печах с холодным тиглем. В способе осуществляют укладку подготовленной шихты, при этом в нижнюю часть тигля укладывают титан около 20% высоты, затем равномерно чередуясь никелевые пластины и титановые таблетки, после заполнения 50% объема шихты между никелевыми пластинами и титановыми таблетками рассыпают порошок легирующих элементов, осуществляют вакуумирование плавильной камеры, плавку проводят в несколько этапов, включающих дегазацию с медленным разогревом шихты и изложницы на малых мощностях 20% от максимальной, затем разогрев шихты с двухступенчатым увеличением мощности сначала до 30-35% и через 3 минуты до 60%, и после экзотермической реакции между титаном и никелем проводят барботаж расплава в течение 3-5 мин путем плавного увеличения мощности до максимальной, сливают расплав при максимальной мощности в изложницу, подогретую до 550-600°С, выдерживают отливку под вакуумом при температуре до 600°С или ниже около 2,5 часов и извлекают заготовку из печи.
Изобретение относится к области металлургии, в частности к алюминиевым сплавам, которые могут быть использованы, для получения термонагруженных деталей для автомобильной промышленности путем прессования выдавливанием, ковки или литья в многократные формы.

Изобретение относится к области металлургии, в частности к выплавке многокомпонентных деформируемых латуней, предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного триботехнического износа.

Изобретение относится к получению углеграфитового композиционного материала. Способ включает вакуумную дегазацию пористой углеграфитовой заготовки, ее пропитку расплавом матричного сплава алюминия под воздействием избыточного давления за счет термического расширения расплава при нагреве выше температуры ликвидус сплава алюминия.
Наверх