Способ выполнения импульсной обвязки трубопроводной арматуры на крановых узлах, расположенных в условиях заболоченной местности и подвижного грунта

Изобретение относится к способам, используемым в газовой промышленности при монтаже импульсных линий на участках газопровода, проложенного в условиях подвижного грунта, заболоченной местности при наличии динамики подвижек грунта и, как следствие, отклонении (от проектных отметок) стояков отбора импульсного газа с возможным появлением изломов металлических трубок (резьбовых соединений) и образованием утечек газа. Сущность изобретения заключается в том, что подведение импульсного газа в требуемые места подачи газа выполнено не стальными трубками, а посредством гибких рукавов высокого давления из многослойного термопластикого рукава и смонтировано с учетом присутствия дополнительного запаса по длине (провиса) с возможностью свободного хода в трех направлениях. 1 ил.

 

Изобретение относится к устройствам, используемым в газовой промышленности, в частности для подачи газа на системы телеуправления, телеизмерения крановых узлов, расположенных в условиях подвижного грунта.

Известен способ подачи газа от стояков отбора импульсного газа до исполнительных (измерительных) устройств, заключающийся в жестком (сварном и резьбовом) соединении устройств стальной металлической трубкой. Данный способ подачи импульсного газа широко используется в газовой промышленности и является «классическим» проектным решением подачи газа к датчикам измерения давления, манометрам, устройствам управления трубопроводной арматурой [1], [2].

Недостатком данного способа является нарушение герметичности импульсных металлических трубок, резьбовых, сварных соединений в результате их изгиба и последующего излома, возникающих вследствие просадки трубопровода и трубопроводной арматуры, расположенных в условиях заболоченной местности и подвижного грунта.

Известен способ компенсации деформационных отклонений импульсных трубок на объектах, где присутствует возможность нарушения их целостности – применение сильфонных компенсаторов [3].

Недостатками данной конструкции является сложность ее изготовления и ограниченная подвижность вследствие недостаточного хода смещения сильфонных элементов.

Так же известен способ, рекомендованный проектными институтами ПАО «ВНИПИгаздобыча» и ПАО «Институт ЮЖНИИГИПРОГАЗ», заключающийся в изменении формы стальной импульсной линии, идущей от стояка отбора импульсного газа до исполнительного (измерительного) устройства с прямолинейной на волновую.

Данный вид компенсации деформационных сдвигов хоть и является простым в реализации и менее затратным, но не предотвращает нарушения герметичности импульсных линий из-за долгосрочных статических и усталостных повреждений применяемого материала и самих резьбовых соединений.

Задачей изобретения является повышение экологической и промышленной безопасности за счет предотвращения утечек газа на импульсных линиях трубопроводной арматуры, расположенной в условиях подвижного грунта и подверженной механической деформации.

Технический результат – создание герметичного соединения импульсной линии от источника до потребителя импульсного газа.

Поставленная задача решается, а технический результат достигается путем выполнения импульсной обвязки трубопроводной арматуры посредством применения гибкого рукава высокого давления, изготовленного из многослойного термопластикого рукава и смонтирована с учетом присутствия дополнительного запаса по длине (провиса) для требуемого свободного хода в трех направлениях.

На фиг.1 представлена схема импульсной обвязки трубопроводной арматуры для осуществления телеуправления на крановых узлах, расположенных в условиях подвижного грунта.

Подключение стояка отбора импульсного газа 1 с фильтром осушителем крана 2 осуществляется с использованием многослойного термопластикого рукава высокого давления 3 имеющего по краям соединительные фитинги 4.

Монтаж гибкого рукава высокого давления 3 производится с учетом присутствия дополнительного запаса по длине (провиса) для требуемого свободного хода в трех направлениях. При возникновении подвижек грунта и просадке трубопроводной арматуры, ведущие к изменению взаимного расположения стояка отбора импульсного газа 1 и колонны крана 5, сохраняется целостность гибкого рукава высокого давления 3 и резьбовых соединений фитингов 4. Предложенный вариант подключения источника и потребителя импульсного газа позволяет избежать возникновения утечек газа и сократить количество газоопасных и огневых работ.

Данный вид соединения применим при монтаже импульсной обвязки на крановых узлах, где присутствует пространственная динамика в расположении источника и потребителя импульсного газа.

Длину линии для соединения источника и потребителя импульсного газа, возможно изменять путем последовательного соединения рукавов.

Совокупность заявленных существенных отличительных признаков является нам неизвестной из патентной и научно-технической информации и в соответствии с этим является “Новой”.

Список источников:

1. 4377.2.Р.03.МГ.6-7(7-8).000.Л1.000 Система магистральных газопроводов Бованенково-Ухта Линейная часть 1-я нитка.

ОАО «ВНИПИгаздобыча»;

2. 07093.1-08.01-307.01 Линейная часть 1-я нитка. «Система магистральных газопроводов Бованенково-Ухта» МТ1 ПО-З «Южниигипрогаз»;

3. Деформации технологических трубопроводов и оборудования нефтегазовых сооружений в процессе эксплуатации и методы их уменьшения // Молодой ученый — 2016 — №8 — С. 168-170 Авлиякулов Н. Н., Бакоев Б. Б., Хасанов Ж. О.

Способ выполнения импульсной обвязки трубопроводной арматуры на крановых узлах, расположенных в условиях заболоченной местности и подвижного грунта, характеризующийся тем, что применяют гибкий рукав высокого давления из многослойного термопластикого рукава и монтируют последний с учетом присутствия дополнительного запаса по длине с возможностью свободного хода в трех направлениях.



 

Похожие патенты:

Группа изобретений относится к области оросительных труб, устойчивых против грызунов, червей и насекомых. Устройство содержит по меньшей мере однослойную гибкую трубу (12), множество выпусков (26) и мелкодисперсные гидрофильные частицы диоксида кремния.

Группа изобретений относится к трубопроводному транспорту. Представлен композитный рукав (1) для ремонта неплотных трубопроводов (2) текучей среды.

Изобретение относится к области ремонта трубопроводов и коллекторов путем сборки и установки внутреннего футляра. Для сборки футляра используют пластиковые тюбинги, втулки, защелки, наконечники со свободно вращающимися хвостовиками и канаты, концы которых закреплены в упомянутых хвостовиках.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для испытания на герметичность трубного лейнера. Сущность: трубу (13) лейнера испытывают на герметичность до реверсии, после протяжки через несущую трубу (11), подлежащую лейнированию, с помощью обжимного кольца (21), и когда на трубу (13) лейнера действует усилие натяжения.

Изобретение относится к трубопроводному транспорту и может быть использовано для ремонта напорных сетей воды, канализации, отопления, пара и т.п. В ремонтируемые трубы (3) и (5) протягивается плоская оболочка (1), склеенная клеем (4).

Изобретение относится к устройству для установки закрывающей системы для газопроводов, находящихся под давлением, используемой при присоединении ответвлений к газопроводам..

Изобретение относится к области транспортировки природных, попутных нефтяных и нефтезаводских газов по магистральным газопроводам. Технический результат состоит в повышении эффективности очистки от механических и жидкостных примесей транспортируемых по магистральным или другим газопроводам высоконапорных газовых потоков.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Предложена конструкция концевого уплотнения направляющей-распределителя 1 для топлива для бензинового двигателя с непосредственным впрыском.

Изобретение относится к трубопроводным системам различного назначения, в частности к гибким рукавам-компенсаторам, предназначенным для использования в гидравлических системах для транспортирования по трубопроводам жидких сред в условиях избыточного давления и вакуума.
Группа изобретений относится к облицовочному материалу для трубопровода и к способу облицовки трубопровода. Облицовочный материал инвертируется для того, чтобы быть вывернутым наизнанку для облицовки трубопровода P.
Наверх