Способ диагностики дефектов эмали зуба

Изобретение относится к медицине, а именно к стоматологии. Используют видеогастроскоп с увеличением изображения не менее чем в 136 раз, совмещенного с видеопроцессором. По интенсивности цвета окрашивания пораженных участков эмали зуба диагностируют стадию клиновидного дефекта. Отсутствие окраски - начальные проявления без видимой глазом убыли ткани. Бледно-розовое окрашивание - поверхностные клиновидные дефекты с глубиной дефекта до 0,2 мм. Розовое окрашивание - средние клиновидные дефекты со средней глубиной дефекта 0,2-0,3 мм. Ярко-красное - глубокий клиновидный дефект с глубиной свыше 0,3 мм и поражением глубоких слоев дентина. Способ позволяет точно провести дифференциальную диагностику дефектов эмали зуба за счет использования видеогастроскопа, совмещенного с видеопроцессором, а также оценку окрашивания эмали зуба. 1 табл., 4 пр.

 

Изобретение относится к области медицины, в частности к стоматологии.

Некариозные поражения зубов, в том числе трещины, эрозии эмали, клиновидные дефекты зубов по данным ряда авторов относятся к одной из распространенных патологий твердых тканей зубов и составляют 38,5-72,9% [Исламова Д.М. Оптимизация методов диагностики и лечения клиновидных дефектов зубов и симптома гиперестезии зуба: автореф. канд мед. наук: 14.01.14 / Исламова Динара Мадритовна, Место защиты: ГБОУ ВПО Башкирский государственный медицинский университет МЗ РФ, Уфа, 2013-23 с.].

Увеличение продолжительности жизни и совершенствование системы профилактики стоматологических заболеваний в настоящее время приводят к увеличению числа пациентов с сохраненными зубами даже в пожилом возрасте. В тоже время наблюдается увеличение объема потребления населением соков и газированных напитков и активное использованием агрессивных для эмали гигиенических средств. Все это увеличивает частоту встречаемости некариозных поражений зубов, возникающих после прорезывания [Шевелюк, Ю.В. Клинико-лабораторное исследование клиновидных дефектов зубов: автореф. дис.…канд. мед. Наук: 14.01.14 / Шевелюк Юлия Владимировна; [Место защиты: Первый Московский государственный медицинский университет им. И.М. Сеченова]. - М., 2011. - 24 с]

Успех лечения патологии твердых тканей зуба зависит от своевременно и правильно проведенной диагностики [Леус, П.А. Некариозные болезни твердых тканей зубов: учебно-методическое пособие / П.А. Леус. Минск: БГМУ, 2008. 55 с; Sulieman, М. An overview of tooth-bleaching techniques: chemistry, safety and efficacy / M. Sulieman // Periodontology 2000. Vol. 48. 2008. P. 148-169.]

Известен способ диагностики дефектов твердых тканей зубов-денситометрический метод исследования дентина зубов [Суфиярова P.M., Герасимова Л.П. Денситометрический метод исследования дентина зубов // Фундаментальные исследования. - 2015. - №1-8. - С. 1685-1688]. Недостатками данного метода являются трудоемкость процесса, для анализа данных денситометрии тканей зубов, пораженных кариесом, необходимо иметь сравнительные показатели нормы, однако в доступной литературе мы не встретили данных о денситометрических показателях дентина интактных зубов и зубов, пораженных кариесом.

Известен способ диагностики дефектов эмали зуба - оценка состояния эмали методом «сидячей капли» [Пат. №2484763 C1RU. МПК А61В 5/00. Способ определения состояния поверхности эмали зуба / В.В. Гришин, В.В. Гришин, В.В. Маслов, М.В. Маслов, Т.В. Маслова, И.Н. Антонова, Т.Б. Ткаченко; заявитель и патентообладатель: Государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения и социального развития Российской Федерации. - №2011151415/14; заявл. 15.12.2011; опубл. 20.06.2013, Бюл. №17.) («Экспериментально-теоретическое обоснование» исследования поверхности эмали методом «Капли» / В.В. Гришин [и др.] // Мат. VI международ, науч.-практ. конф. «Стоматология славянских государств». - Белгород, 2013. - С. 97-100.] Данный способ требует огромных трудозатрат, математических навыков, недостаточно точен и объективен.

Известен способ диагностики клиновидных дефектов твердых тканей зубов методом лазерно-индуцированной флуоресценции и рентгенографии [Сарычева И.Н., Янушевич О.О., Минаков Д.А., Шульгин В.А. Диагностика клиновидных дефектов твердых тканей зубов методом лазерно-индуцированной флуоресценции и рентгенографии // Фундаментальные исследования. - 2015. - №1-10. - С. 2084-2090]. Исследования проводились in vivo на 60 пациентах с клиновидным дефектом в пришеечной области, согласно предварительным клиническим исследованиям. Стадии некариозного процесса определяли в соответствии с топографической классификацией: начальная, поверхностная, средняя и глубокая стадии клиновидного дефекта.

Метод лазерно-индуцированной флуоресценции (ЛИФ).

Спектры флуоресценции регистрировали с помощью запатентованного устройства, созданного на базе волоконно-оптического спектрометра USB4000-VIS-NIR (Ocean Optics), сопряженного с компьютером. Область зондирования зубов определялась площадью волновода и составляла величину, равную 0,28 мм2. В качестве источника возбуждения флуоресценции использовался лазерный диод, излучающий на длине волны 445 нм. Плотность мощности излучения не превышала 20 мВт/см2. Измерения проводились в затемненном помещении в отсутствие источников рассеянного света. Спектры флуоресценции эмали фиксировали в интактной и пораженной клиновидным дефектом пришеечной области зуба. От каждой области каждого зуба было снято не менее 10 спектров флуоресценции, после чего спектры были усреднены. В случае, если интактный участок у пораженного зуба отсутствовал, то опорный спектр снимался с интактной пришеечной области эквивалентного зуба. Исследования для интактных зубов свидетельствуют о зависимости спектра флуоресценции как от анатомической области зуба, так и от типа зуба верхней и нижней челюсти. Спектр флуоресценции интактной области зуба использовался в качестве индикатора спектральных изменений, вызванных патологическими процессами. Перед проведением люминесцентных исследований пациентам была проведена процедура профессиональной гигиены полости рта и была рекомендована зубная паста, не вносящая существенного вклада в регистрируемый сигнал.

Метод ЛИФ, необходимо учитывать ряд аспектов. Во-первых, необходимо учитывать механизм свечения не только пораженных зон, но и интактных участков твердых тканей зубов. Во-вторых, необходимо учитывать особенности морфологического строения, химического и минерального состава твердых тканей в области клиновидного дефекта в зависимости от стадии развития данной патологии. А в-третьих, необходимо привлечение современных математических методов для мультиспектральной обработки информации, например, нейросетевые алгоритмы распознавания, алгоритмы, реализующие метод машин опорных векторов и др. Также несомненна перспективность диагностики клиновидных дефектов средней и глубокой стадий методом МСКТ.

Для регистрации клиновидных дефектов in vivo применяли также метод многослойной спиральной компьютерной томографии. Исследования были выполнены на аппарате Philips Brilliance ICT 64 с толщиной среза 0,55 мм в аксиальной плоскости. Плоскость сканирования была перпендикулярна окклюзионной плоскости. Уровень визуализации формировался от подбородочного выступа нижней челюсти до твердого неба с захватом альвеолярных бухт верхнечелюстных пазух. Для измерения толщины эмали применяли программу OSIRIX версии 5-1,6, позволяющую проводить постпроцессинговую обработку (многоплоскостные реформации) изображений, при которой плоскости выставлялись по оси зуба и перпендикулярно окклюзионной плоскости. У данного метода есть ряд существенных ограничений. Во-первых, с помощью данного метода практически невозможно зафиксировать клиновидный дефект начальной и поверхностной стадий развития. А во-вторых, ограничена частота применения данного метода из-за лучевой нагрузки на человека.

Данный способ выбран за прототип. Способ требует многоступенчатой процедуры для регистрации результатов метода лазерно-индуцированной флуоресценции и рентгенографии, а именно, необходимо учитывать механизм свечения не только пораженных зон, но и интактных участков твердых тканей зубов, учитывать особенности морфологического строения, химического и минерального состава твердых тканей в области клиновидного дефекта в зависимости от стадии развития данной патологии, необходимо привлечение современных математических методов для мультиспектральной обработки информации, например, нейросетевые алгоритмы распознавания; алгоритмы, реализующие метод машин опорных векторов.

Задачей изобретения является повышение точности диагностики дефектов эмали зуба и объективности определения глубины поражения для дальнейшего совершенствования методов лечения некариозных поражений тканей зуба.

Технический результат заключается в обеспечении возможности дифференциальной диагностики некариозных поражений, повышении точности диагностики в зависимости от глубины поражения.

Это достигается за счет того, что используют видеогастроскоп с увеличением изображения не менее, чем в 136 раз, совмещенного с видеопроцессором, и по интенсивности цвета окрашивания пораженных участков эмали зуба диагностируют стадию клиновидного дефекта: отсутствие окрашивания - начальные проявления без видимой глазом убыли ткани, бледно-розовое окрашивание - поверхностные клиновидные дефекты с глубиной дефекта до 0,2 мм; розовое - средние клиновидные дефекты со средней глубиной дефекта 0,2-0,3 мм; ярко-красное - глубокий клиновидный дефект, с глубиной свыше 0,3 мм и поражением глубоких слоев дентина.

Диагностика дефектов эмали зуба сопряжена с рядом трудностей: необходимостью проведения перед исследованием специальных подготовительных процедур, таких как фиксация, дегидратация, декальцинация, окраска, контрастирование, напыление, изготовления реплик. Все это искажают структуру тканей зуба, при этом и физико-механические свойства тканей могут претерпевать необратимые изменения. Заявляемый способ предусматривает использование видеогастроскопа, совмещенного с видеопроцессором, который обеспечивает высокое разрешение, обусловленное функцией оптического увеличения. Для осуществления данного способа необходимо увеличение не менее, чем в 136 раз. Разрешающая возможность оптической системы данного эндоскопа играет важную роль при диагностике ранних стадий патологии эмали и дентина зуба. Режим одновременного показа двух изображений(TwinMode) поддерживает обнаружение и демаркацию пораженных участков и появляется возможность просмотра всех деталей одновременно.

С тем чтобы подтвердить правильность наших рассуждений, было проведено обследование 17 пациентов обоего пола (25-77 лет), обратившихся в одну из государственных поликлиник г. Москвы. Исследование проводилось на основании письменного добровольного информированного согласия.

Были выявлены дефекты эмали зубов различной степени, проведена визуализация рельефной структуры эмали зуба и окрашивания подлежащего дентина зуба и регистрации дефектов эмали с помощью видеогастроскопа с увеличением EG-2990Zi, выполненного по технологии MagniView (фирма Пентакс) (увеличивает изображение в 136 раз).

Для подтверждения полученных нами результатов пациентам (17 человек) была проведена оценка глубины клиновидных дефектов с помощью градуированного зонда по классификации Махмудханова С.М.

Классификация С.М. Махмудханова [Терапевтическая стоматология: Учебник / Под. ред. Ю.М. Максимовского. - М.: Медицина, 2002. - 138-140 с.]

1. Начальные проявления без видимой глазом убыли ткани. Выявляются с помощью лупы. Однако чувствительность к внешним раздражителям повышена.

2. Поверхностные клиновидные дефекты в виде щелевидных повреждений эмали с той же локализацией вблизи эмалево-цементной границы. Глубина дефекта до 0,2 мм, длина от 3 до 3,5 мм. Убыль ткани определяется визуально. Характерно усиление гиперестезии шеек зубов.

3. Средние клиновидные дефекты, образованные двумя плоскостями, располагающимися под углом 40-45°С. Средняя глубина дефекта 0,2-0,3 мм, длина 3,5-4 мм. Цвет дефекта сходен с желтоватым цветом нормального дентина.

4. Глубокий клиновидный дефект, имеющий длину 5 мм и более, сопровождающийся поражением глубоких слоев дентина вплоть до коронковой полости зуба, что может завершиться отломом коронки. Дно и стенки гладкие, блестящие, края ровные.

Глубина поражения твердых тканей зуба, установленные с помощью видеогастроскопа с увеличением EG-2990Zi, подтверждены в 100% случаев (Табл. 1).

Способ осуществляется следующим образом:

проводят съемку коронковой части зуба с помощью видеогастроскопа с увеличением не менее 136 раз, совмещенного с видеопроцессором, (например, видеогастроскоп EG-2990Zi, совмещенного с видеопроцессором EPKi 7000, выполненного по технологии MagniView (фирма Пентакс), в режиме одновременного показа двух изображений (TwinMode)), с использованием инструментального канала (например, 2,8 мм, оснащенного независимой системой Forward Water Jet), при прикладывании которого к поверхности зуба, происходит ирригация поверхности водой и съемка поверхности зуба, с последующей передачей данных на видеопроцессор, визуально оценивают интенсивность цвета твердых тканей зуба: отсутствие окрашивания - начальные проявления без видимой глазом убыли ткани, бледно-розовое окрашивание - поверхностные клиновидные дефекты с глубиной дефекта до 0,2 мм; розовое - средние клиновидные дефекты со средней глубиной дефекта 0,2-0,3 мм; ярко-красное - глубокий клиновидный дефект, с глубиной свыше 0,3 мм и поражением глубоких слоев дентина. Возможен просмотр изображения, постановка дифференциального диагноза, сохранение в архиве для сравнения в последующем для оценки прогрессирования или приостановки процесса в ходе лечения.

Клинический пример №1.

Больной К., 23 лет, обратился в стоматологическую клинику с жалобами на чувствительность верхних зубов справа. Объективно зубы верхней челюсти интактные.

Проведена съемка коронковой части зуба с помощью видеогастроскопа EG-2990Zi, совмещенного с видеопроцессором EPKi 7000, выполненного по технологии MagniView (фирма Пентакс), в режиме одновременного показа двух изображений (TwinMode)), с использованием инструментального канала, 2,8 мм, оснащенного независимой системой Forward Water Jet. Инструментальный канал приложили к поверхности зуба, произошла ирригация поверхности водой и съемка поверхности зуба, изображение передано на видеопроцессор, визуально оценивали интенсивность цвета твердых тканей зуба. Обнаружили отсутствие окрашивания - начальные проявления без видимой глазом убыли ткани.

Клинический пример №2.

Больная О., 34 лет, обратилась в стоматологическую клинику с жалобами на чувствительность нижних зубов справа при чистке зубов. Объективно на зубах 4.4, 4.5 имеется незначительный дефекит эмали, в пришеечной области.

Проведена съемка коронковой части зуба с помощью видеогастроскопа EG-2990Zi, совмещенного с видеопроцессором EPKi 7000, выполненного по технологии MagniView (фирма Пентакс), в режиме одновременного показа двух изображений (TwinMode)), с использованием инструментального канала, 2,8 мм, оснащенного независимой системой Forward Water Jet. Инструментальный канал приложили к поверхности зуба, произошла ирригация поверхности водой и съемка поверхности зуба, изображение передано на видеопроцессор, визуально оценивали интенсивность цвета твердых тканей зуба. Обнаружили бледно-розовое окрашивание - поверхностные клиновидные дефекты с глубиной дефекта до 0,2 мм.

Клинический пример №3.

Больной П., 38 лет, обратился в стоматологическую клинику с жалобами на резкую боль при приеме кислой, холодной пищи в области премоляров верхней челюсти слева. Объективно на зубах 2.4, 2.5 имеется дефект эмали, в пришеечной области.

Проведена съемка коронковой части зуба с помощью видеогастроскопа EG-2990Zi, совмещенного с видеопроцессором EPKi 7000, выполненного по технологии MagniView (фирма Пентакс), в режиме одновременного показа двух изображений (TwinMode)), с использованием инструментального канала, 2,8 мм, оснащенного независимой системой Forward Water Jet. Инструментальный канал приложили к поверхности зуба, произошла ирригация поверхности водой и съемка поверхности зуба, изображение передано на видеопроцессор, визуально оценивали интенсивность цвета твердых тканей зуба. Обнаружили розовое окрашивание - средние клиновидные дефекты со средней глубиной дефекта 0,2-0,3 мм

Клинический пример №4.

Больной Д., 60 лет, обратился в стоматологическую клинику с жалобами на резкую боль при приеме пищи в области премоляров и моляров верхней челюсти справа. Объективно на зубах 1.4, 1.5, 1.6, 1.7, 1.8 имеются дефекты эмали, в пришеечной области. При зондировании стенок болезненные, при попадании воздуха болезненные.

Проведена съемка коронковой части зуба с помощью видеогастроскопа EG-2990Zi, совмещенного с видеопроцессором EPKi 7000, выполненного по технологии MagniView (фирма Пентакс), в режиме одновременного показа двух изображений (TwinMode)), с использованием инструментального канала, 2,8 мм, оснащенного независимой системой Forward Water Jet. Инструментальный канал приложили к поверхности зуба, произошла ирригация поверхности водой и съемка поверхности зуба, изображение передано на видеопроцессор, визуально оценивали интенсивность цвета твердых тканей зуба. Обнаружили ярко-красное окрашивание - глубокий клиновидный дефект, с глубиной свыше 0,3 мм и поражением глубоких слоев дентина.

Способ диагностики дефектов эмали зуба, отличающийся тем, что используют видеогастроскоп с увеличением изображения не менее чем в 136 раз, совмещенного с видеопроцессором, и по интенсивности цвета окрашивания пораженных участков эмали зуба диагностируют стадию клиновидного дефекта: отсутствие окраски - начальные проявления без видимой глазом убыли ткани, бледно-розовое окрашивание - поверхностные клиновидные дефекты с глубиной дефекта до 0,2 мм; розовое - средние клиновидные дефекты со средней глубиной дефекта 0,2-0,3 мм; ярко-красное - глубокий клиновидный дефект с глубиной свыше 0,3 мм и поражением глубоких слоев дентина.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам функциональной диагностики, нейрохирургии и неврологии, и может быть использована для вычисления скорости кровотока в сосудах.

Изобретение относится к портативному прибору, способу сбора и обработки данных непрерывного мониторирования и системе медицинского контроля. Технический результат заключается в повышении надежности сбора и обработки данных непрерывного мониторирования содержания аналита в физиологической жидкости.

Изобретение относится к медицинской технике. Способ эксплуатации глюкометра содержит ввод в микропроцессор через интерфейс пользователя по меньшей мере одного из задаваемого пользователем низкого значения уровня глюкозы и задаваемого пользователем высокого значения уровня глюкозы для определения значений уровня глюкозы для минимального или максимального значений уровня глюкозы.
Изобретение относится к медицине, а именно к кардиологии и кардиохирургии, и может быть использовано для прогнозированию нарушения эвакуаторной функции илеоцекального отдела кишечника после торакальных операций.

Изобретение относится к медицине, а именно к онкологии, урологии. Определяют факторы риска: возраст, рост, вес, ростово-весовое соотношение, конституция, тип нервной системы, группа крови, резус-фактор, отягощенная наследственность по онкологии, характер труда, курение, число рентгеновских исследований грудной клетки, авиаперелеты в часах, продолжительность сна, количество приемов пищи в день, характер пищи, количество выпиваемой жидкости в день, количество алкоголя в месяц, наличие предшествующих заболеваний предстательной железы, наличие нарушений гомеостаза, уровень простатспецифического антигена (ПСА).

Изобретение относится к медицине, а именно к хирургии и лучевой диагностике, и может быть использовано для определения внутрипросветного давления в толстой кишке при проведении компьютерной томографии у больных с воспалительными осложнениями дивертикулярной болезни.

Изобретение относится к области медицины, а именно к педиатрии, дерматовенерологии и лучевой диагностике, и может быть использовано для оценки степени тяжести течения атопического дерматита у детей.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для прогнозирования возникновения осложнений после открытой репозиции и внутренней фиксации (ORIF) перелома пяточной кости.

Изобретение относится к медицине и может быть использовано в неврологии, психиатрии, нейрофизиологии, нейропсихологии и рядом других современных нейронаук, изучающих головной мозг человека, а также в области информационных и коммуникационных технологий при создании искусственного интеллекта, робототехники и в архитектуре.
Изобретение относится к медицине, а именно к абдоминальной хирургии, и может быть использовано для выбора метода оперативного лечения при прободных язвах двенадцатиперстной кишки.

Изобретение относится к медицине, а именно к реконструктивной хирургии, и может быть использовано для прогнозирования формирования патологического рубца при заживлении операционной раны. Проводят лазерное исследование методом лазерной флуоресцентной спектроскопии с использованием источника на длине волны λе=365 нм. Исследования проводят первый раз в период с 6 по 9 сутки и второй раз в период с 17 по 21 день после операции. При этом выявляют значения интенсивности флюоресценции коллагена и эластина If и значения интенсивности обратно рассеянного излучения Ie, уменьшенного светофильтром в β~103 раз. По полученным данным определяют индекс тканевого содержания коллагена и эластина операционной раны ηр и интактной ткани по известной формуле. Затем определяют индексы тканевого содержания коллагена и эластина μn при проведении исследования на n сутки и μm, при проведении исследований через m дней по формуле где n - день проведения первого исследования в период 6-9 сутки после операции, a m - день проведения второго исследования в период 17-21 сутки. При значении соотношения μn/μm≤0,35 прогнозируют развитие келоидного рубца, при 0,35<μn/μm<0,6 - развитие гипертрофического рубца, а при μn/μm>0,6 прогнозируют образование нормотрофического рубца. Способ обеспечивает оценку состояния кожи в послеоперационном периоде за счет определения тканевого содержания коллагена и эластина операционной раны и интактной ткани. 4 пр.
Наверх