Солнечный дом

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты. В солнечном доме, содержащем ограждающие конструкции стен и крышу со встроенными солнечными модулями из скоммутированных солнечных элементов в стеклянной защитной оболочке, согласно изобретению на поверхности крыши установлены в несколько рядов в меридиональном направлении двухсторонние солнечные модули с ориентацией рабочих поверхностей на восток и запад, каждый модуль выполнен из скоммутированных параллельно групп солнечных элементов с двухсторонней рабочей поверхностью, каждая группа солнечных элементов состоит из последовательно скоммутированных в меридиональном направлении солнечных элементов и снабжена диодом, на верхних и нижних торцах двухсторонних солнечных модулей закреплены в тепловом контакте со стеклянной защитной оболочкой трубы для прокачки теплоносителя, соединенные с контуром горячего водоснабжения и отопления солнечного дома, на поверхности крыши вокруг двухсторонних солнечных модулей установлены отражатели солнечного излучения. Технический результат заключается в увеличении производства электроэнергии и теплоты и в увеличении времени работы солнечных модулей в утренние и вечерние часы. В результате использования изобретения повышается коэффициент использования установленной мощности гелиотехнических устройств, встроенных в крышу солнечного дома. 7 з.п. ф-лы, 5 ил., 1 табл.

 

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты.

Известны солнечные (гелиоэнергоактивные) здания, снабженные устройствами для тепло- и электроснабжения, приготовления горячей воды за счет преобразования энергии Солнца. В качестве таких устройств используют солнечные коллекторы и фотоэлектрические модули, которые встраивают в ограждающие конструкции здания, в стены и крышу (Энергоактивные здания. Под редакцией Э.В. Сарнацкого и Н.П. Селиванова, М., Стройиздат 1988, стр. 59-347). Недостатком известных солнечных домов является низкая концентрация солнечного излучения в солнечных коллекторах и фотоэлектрических модулях, встроенных в ограждающие конструкции здания, и, как следствие, низкая температура теплоносителей в солнечном коллекторе, высокая стоимость солнечных фотоэлектрических модулей.

Наиболее близким по технической сущности к предлагаемому изобретению является солнечный дом, содержащий ограждающие конструкции стен и крышу, при этом на крыше установлены два солнечных модуля с концентраторами, состоящие из двух симметричных сопряженных полупараболоцилиндрических зеркальных отражателей с апертурным углом 24-72°, оптические оси которых направлены по оси север-юг и ориентированы на юг под углом (90°-ϕ) к горизонту, а ветви рядом расположенных полупараболоцилиндрических отражателей имеют одну общую вертикальную касательную плоскость симметрии, ветви каждого отражателя развернуты относительно фокальной оси таким образом, что угол между фокальными плоскостями каждой из ветвей равен 24-70°, а приемники солнечного излучения установлены в каждом отражателе между фокальными плоскостями их ветвей, где ϕ - широта местности. Зеркальные отражатели могут быть выполнены в виде зеркальных фацет из закаленного стекла с шириной фацет «а», равной а=(0,4-1,2)OF, где OF - фокусное расстояние концентратора (Пат. РФ №2303753, Бюл. 21 от 27.07.2007 г.).

Недостатком известного солнечного дома является ограниченное время работы солнечных модулей из-за их затенения ветвями полупараболоцилиндрических отражателей.

Задачей изобретения является повышение эффективности использования солнечной энергии и снижение стоимости получаемой электроэнергии и теплоты, а также создание эффективных гелиотехнических устройств, встроенных в крыши зданий для обеспечения их электроэнергией и теплом.

Технический результат заключается в увеличении производства электроэнергии и теплоты и в увеличении времени работы солнечных модулей в утренние и вечерние часы. В результате использования изобретения повышается коэффициент использования установленной мощности гелиотехнических устройств, встроенных в крышу солнечного дома.

Технический результат достигается тем, что в солнечном доме, содержащем ограждающие конструкции стен и крышу со встроенными солнечными модулями из скоммутированных солнечных элементов в стеклянной защитной оболочке, согласно изобретению, на поверхности крыши установлены в несколько рядов в меридиональном направлении двухсторонние солнечные модули с ориентацией рабочих поверхностей на восток и запад, каждый модуль выполнен из скоммутированных параллельно групп солнечных элементов с двухсторонней рабочей поверхностью, каждая группа солнечных элементов состоит из последовательно скоммутированных в меридиональном направлении солнечных элементов и снабжена диодом, на верхних и нижних торцах двухсторонних солнечных модулей закреплены в тепловом контакте со стеклянной защитной оболочкой трубы для прокачки теплоносителя, соединенные с контуром горячего водоснабжения и отопления солнечного дома, на поверхности крыши вокруг двухсторонних солнечных модулей установлены отражатели солнечного излучения, расстояние l между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением

l/h=2÷6,

длина L отражателей солнечного излучения в меридиональном направлении равна

L=H+l/2,

где l - расстояние между рядами двухсторонних солнечных модулей;

Н - длина одного ряда двухсторонних солнечных модулей,

ширина D отражателей в широтном направлении равна

D=nl,

где n - число рядов двухсторонних солнечных модулей, установленных на крыше солнечного дома;

l - расстояние между рядами двухсторонних солнечных модулей.

В варианте солнечного дома крыша солнечного дома ориентирована на юг в северном полушарии и на север в южном полушарии, имеет угол наклона β крыши солнечного домак горизонтальной поверхности, равный

β=ϕ-Δ,

где ϕ - широта местности;

Δ - отклонение (Δ=0÷24°).

В другом варианте солнечного дома крыша солнечного дома установлена горизонтально, а ее края ориентированы в широтном и меридиональном направлении.

Еще в одном варианте солнечного дома двухсторонние солнечные модули установлены в вертикальной плоскости.

В варианте солнечного дома двухсторонние солнечные модули в соседних рядах отклонены от вертикальной плоскости в противоположные стороны на 10÷20°.

В варианте солнечного дома отражатели солнечного излучения выполнены в виде зеркальных отражателей.

В варианте солнечного дома отражатели солнечного излучения выполнены в виде черепицы.

Сущность изобретения поясняется на фиг. 1, 2, 3, 4, где на фиг. 1 общий вид солнечного дома с горизонтальной крышей и вертикально установленными солнечными модулями, на фиг. 2 - вид сверху крыши солнечного дома, на фиг. 3 - электрическая схема коммутации двухсторонних солнечных элементов в солнечном модуле, на фиг. 4 - поперечное сечение двухстороннего солнечного модуля с встроенными с двух сторон трубами для прокачки теплоносителя, на фиг. 5 - общий вид солнечного дома с крышей, ориентированной на юг под углом β к горизонтальной поверхности.

На фиг. 1 солнечный дом 16 содержит ограждающие конструкции стен 1 и крышу 2 дома 16. На поверхности крыши 2 установлены в несколько рядов 3 в меридиональном направлении двухсторонние солнечные модули 4 с ориентацией рабочих поверхностей на восток и запад. На поверхности крыши 2 вокруг двухсторонних солнечных модулей установлены отражатели 5 солнечного излучения 6. Расстояние l между рядами 3 двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей 4 связаны соотношением

l/h=2÷6.

На фиг. 2 длина L отражателей 5 солнечного излучения в меридиональном направлении равна

L=H+l/2,

где Н - длина одного ряда двухсторонних солнечных модулей 4.

Ширина D отражателей 5 солнечного излучения в широтном направлении равна D=nl, где n - число рядов двухсторонних солнечных модулей, установленных на крыше солнечного дома, l - расстояние между рядами двухсторонних солнечных модулей.

На фиг. 3 каждый двухсторонний солнечный модуль 4 выполнен из скоммутированных параллельно групп 7 солнечных элементов 8 с двухсторонней рабочей поверхностью в стеклянной защитной оболочке 9 с герметизацией полисилоксановым гелем. Каждая группа 7 солнечных элементов состоит из 36 последовательно скоммутированных в меридиональном направлении солнечных элементов 8 и снабжена диодом 10.

На фиг. 4 на верхних 11 и нижних 12 торцах двухсторонних солнечных модулей 4 закреплены в тепловом контакте со стеклянной защитной оболочкой 9 трубы 13 для прокачки теплоносителя, соединенные с замкнутым контуром горячего водоснабжения и отопления солнечного дома (на фиг.4 не показано).

На фиг. 5 крыша 2 солнечного дома ориентирована на юг в северном полушарии и на север в южном полушарии и имеет угол наклона β крыши 2 к горизонтальной поверхности 15, равный β=ϕ-Δ, где ϕ - широта местности; Δ - отклонение (Δ=0÷24°). Зеркальные отражатели 5 солнечного излучения 6 выполнены в виде черепицы 14 и выполняют функции крыши 2 солнечного дома.

Солнечный дом функционирует следующим образом.

На восходе солнечное излучение освещает восточную сторону двухсторонних солнечных модулей 4 (фиг. 1). Одновременно на восточную сторону поступает солнечное излучение, отраженное от отражателей 5. На закате двухсторонние солнечные модули 4 преобразуют в электрическую и тепловую энергию солнечное излучение, поступающее от Солнца и отраженное от отражателей 5 (фиг. 4). Параллельная коммутация групп 7 из последовательно скоммутированных в меридиональном направлении солнечных элементов 8 с двухсторонней рабочей поверхностью обеспечивает равномерное освещение солнечных элементов в каждой группе, а диоды 10 предупреждают перетоки электрической энергии между группами 7. Количество параллельно скоммутированных групп 7 определяет высоту h и электрическую мощность двухсторонних солнечных модулей.

В таблице 1 представлены результаты компьютерного моделирования электрической энергии, вырабатываемой солнечным домом по месяцам и в целом за год в кВтч/кВт при различной ориентации солнечные модулей для г. Луксор (Египет) при коэффициенте отражения крыши 0,3 (бетон) и 0,9 (зеркальный отражатель).

Отношение эффективности преобразования солнечного излучения тыльной поверхностью к фронтальной поверхности двухстороннего солнечного модуля 4 принималось равным 0,92.

Использование вертикальных двухсторонних солнечных модулей с отражателями солнечного излучения с ориентацией двухсторонних рабочих поверхностей на восток и запад и плоскости двухсторонних солнечных модулей в меридиональном направлении увеличивает годовую выработку электроэнергии и теплоты в 1,49-1,67 раза.

В полдень, когда солнечное излучение находится в меридиональной плоскости и солнечное излучение параллельно плоскости вертикально установленных двухсторонних солнечных модулей, имеет место снижение производства электроэнергии в течение 1-2 часов. Для повышения производства электроэнергии в полдень и выравнивания графика производства электроэнергии согласно фиг. 2 плоскости двухсторонних солнечных модулей отклонены от вертикального положения в соседних рядах в противоположные стороны на 10-20°, что позволяет увеличить производство электроэнергии в период максимального прихода солнечной радиации на поверхность Земли.

Пример выполнения солнечного дома.

Солнечный дом в Анапе на широте ϕ=45° с.ш. имеет южный скат крыши 2 размером 7×12 м, установленный под оптимальным углом β=ϕ-Δ=45°-10°=35° к горизонтальной поверхности. Южный скат крыши 2 покрыт черепицей 14, имеющей зеркальное покрытие с коэффициентом отражения 0,9.

Двухсторонние солнечные модули 4 установлены в шесть рядов в вертикальной плоскости, ориентированной в меридиональном направлении «юг-север». Рабочие поверхности двухсторонних солнечных модулей двухсторонних солнечных модулей 4 ориентированы на запад и восток.

Каждый двухсторонний солнечный модуль 4 содержит три параллельно соединенные группы 7 солнечных элементов 8. Каждая группа 7 солнечных элементов 8 содержит 36 скоммутированных последовательно кремниевых солнечных элементов размером 78×156 мм с двухсторонней рабочей поверхностью и снабжена диодом 10. Защитная оболочка 9 модуля выполнена из двух закаленных стекол толщиной 2 мм с герметизацией солнечных элементов 8 полисилоксановым гелем. С нижней и верхней стороны двухстороннего солнечного модуля 4 по всей его длине закреплены в тепловом контакте с модулем 4 металлопластиковые трубы 13 диаметром 20 мм для прокачки теплоносителя. Размеры двухстороннего солнечного модуля 4: высота 0,6 м, длина 3 м. На крыше 2 установлено шесть рядов 3, в каждом ряду по 2 двухсторонних солнечных модуля 4 с расстоянием между рядами l=2,0 м, расстояние от края крыши 2 до ближайшего ряда 3 составляет l/2=1,0 м, расстояние от конька крыши 2 и от нижнего ската крыши 2 до ряда 3 модулей равно l/4=0,5 м. Пиковая электрическая мощность каждого модуля 4 составляет 225 Вт, солнечного дома 2,7 кВт. Годовое производство электрической энергии 6500 кВтч на 50% превышает производство электроэнергии солнечными модулями, установленными на крыше под углом 35° к горизонту.

Минимальная высота Солнца на восходе и закате, при которой освещаются поверхности всех двухсторонних солнечных модулей, определяется углом γ между солнечным излучением и горизонтальной поверхностью: γ=arctg h/l=arctg 0,6 m/2 m=16°. При этом продолжительность освещения всей поверхности двухсторонних солнечных модулей составит

Вертикальное расположение двухсторонних солнечных модулей увеличивает эффективность использования солнечной энергии в утренние и вечерние часы, а также в течение года за счет снижения осаждения пыли на вертикальной поверхности двухсторонних солнечных модулей. Снег на поверхности крыши имеет коэффициент отражения 0,8 и обеспечивает работу солнечного дома в зимних условиях.

1. Солнечный дом, содержащий ограждающие конструкции стен и крышу со встроенными солнечными модулями из скоммутированных солнечных элементов в стеклянной защитной оболочке, отличающийся тем, что на поверхности крыши установлены в несколько рядов в меридиональном направлении двухсторонние солнечные модули с ориентацией рабочих поверхностей на восток и запад, каждый модуль выполнен из параллельно скоммутированных групп солнечных элементов с двухсторонней рабочей поверхностью, каждая группа солнечных элементов состоит из последовательно скоммутированных в меридиональном направлении солнечных элементов и снабжена диодом, на верхних и нижних торцах двухсторонних солнечных модулей закреплены в тепловом контакте со стеклянной защитной оболочкой трубы для прокачки теплоносителя, соединенные с контуром горячего водоснабжения и отопления солнечного дома, на поверхности крыши вокруг двухсторонних солнечных модулей установлены отражатели солнечного излучения, расстояние l между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением

l/h=2÷6,

длина L отражателей солнечного излучения в меридиональном направлении равна

L=H+l/2,

где l - расстояние между рядами двухсторонних солнечных модулей;

Н - длина одного ряда двухсторонних солнечных модулей,

ширина D отражателей в широтном направлении равна

D=nl,

где n - число рядов двухсторонних солнечных модулей, установленных на крыше солнечного дома;

l - расстояние между рядами двухсторонних солнечных модулей.

2. Солнечный дом по п. 1, отличающийся тем, что крыша солнечного дома ориентирована на юг в северном полушарии и на север в южном полушарии, имеет угол наклона β крыши солнечного дома к горизонтальной поверхности, равный

β=ϕ-Δ,

где ϕ - широта местности;

Δ - отклонение (Δ=0÷24°).

3. Солнечный дом по п. 1, отличающийся тем, что крыша солнечного дома установлена горизонтально, а ее края ориентированы в широтном и меридиональном направлении.

4. Солнечный дом по п. 1, отличающийся тем, что двухсторонние солнечные модули установлены в вертикальной плоскости.

5. Солнечный дом по п. 1, отличающийся тем, что двухсторонние солнечные модули в соседних рядах отклонены от вертикальной плоскости в противоположные стороны на 10÷20°.

6. Солнечный дом по п. 1, отличающийся тем, что отражатели солнечного излучения выполнены в виде зеркальных отражателей.

7. Солнечный дом по п. 1, отличающийся тем, что отражатели солнечного излучения выполнены в виде диффузных отражателей.

8. Солнечный дом по любому из пп. 1, 6, 7, отличающийся тем, что отражатели солнечного излучения выполнены в виде черепицы.



 

Похожие патенты:

Изобретение относится к области ветроэнергетики. Ветроэнергогенерирующая установка включает ротор с вертикальной осью вращения и вогнутыми лопастями и концентратор цилиндрической формы, состоящий из направляющих, зафиксированные на стойках.

Изобретение относится к области электротехники и энергетики. Устройство автономного электропитания содержит ветрогенератор, преобразователь солнечной энергии в электрическую, блок заряда аккумуляторных батарей, аккумуляторные батареи, выходы которых присоединены через инвертор напряжения и распределительное устройство к нагрузке, и узел управления, при этом дополнительно введены блок заряда суперконденсаторов и блок суперконденсаторов, при этом блок заряда суперконденсаторов подключен входом параллельно блоку заряда аккумуляторных батарей к ветрогенератору и преобразователю солнечной энергии в электрическую, а выходом соединен с входом блока суперконденсаторов, выход которого соединен с входом блока заряда аккумуляторных батарей.

Изобретение относится к области электротехники, в частности к энергетическим установкам малой энергетики, и может быть использовано для создания ветро-фотоэлектрических станций.

Изобретение относится к ветро-фотоэлектрическим станциям. Энергетическая установка содержит центральную башню и ротор с поворотными лопастями, размещенными между жесткими кольцевыми дисками и выполненными с возможностью вращения вокруг вертикальных осей посредством приводов поворота, элементы связи кольцевых дисков со ступицами ротора, установленными с возможностью вращения вокруг продольной оси центральной башни, и кольцевой понтон, размещенный с возможностью вращения вокруг центральной башни и скрепленный с нижним кольцевым диском, батарею фотоэлектрических модулей, закрепленной на верхнем кольцевом диске на его верхней периферийной поверхности, имеющей в каждой ее точке отклонение нормали в сторону от оси вращения ротора на 5°…45°, зависимый инвертор, установленный на роторе, и токопередающий узел, установленный соосно с центральной башней.

Изобретение относится к электротехнике, к двигателям постоянного тока с постоянным магнитом, использующим солнечный генератор для питания обмотки ротора. Технический результат заключается в более полном использовании площади солнечных элементов и увеличении их мощности, а также в снижении э.д.с.

Использование: в области электроэнергетики для преобразования солнечной радиации в электрическую энергию. Технический результат – повышение эффективности за счет преобразования максимального количества фотонов в электричество.

Закрытое устройство для использования солнечной энергии содержит первый приемник, который образует относительно закрытую первую полость, на которой обеспечено одно входное световое отверстие, один элемент преобразования световой энергии или один элемент преобразования световой энергии и по один светоотражающий элемент, который обеспечен на внутренней стенке первой полости или во внутреннем пространстве первой полости, световодное устройство плотно соединеное с входным световым отверстием, для направления собранного снаружи солнечного света таким образом, чтобы он входил в первую полость через входное световое отверстие, второй приемник, который образован в виде второй полости, на которой обеспечено входное световое отверстие, при этом второй приемник частично обеспечен во внутреннем пространстве первой полости, элемент преобразования световой энергии обеспечен на внутренней стенке второй полости или обеспечен во внутреннем пространстве второй полости, световодное устройство проходит через входное световое отверстие первой полости и плотно соединено с входным световым отверстием второй полости для направления собранного снаружи солнечного света во вторую полость, световодное устройство, соединенное с входным световым отверстием второй полости, плотно соединено с входным световым отверстием второй полости, вторая полость дополнительно снабжена одним входным отверстием второго рабочего тела, чтобы позволить второму рабочему телу входить во вторую полость, и выходным отверстием второго продукта, чтобы позволить второму продукту выходить из второй полости в присоединенную снаружи систему циркуляции, причем второй продукт является веществом, получаемым после воздействия по меньшей мере части энергии солнечного света на первое рабочее тело.

Группа изобретений относится к наружной обшивочной панели здания и электрической соединительной коробке для нее. Технический результат заключается в облегчении сборки панелей и соединении проводами фотогальванических модулей.

Изобретение относится к области строительства, а именно к опорной плите для установки фотоэлектрических панелей на крыше здания. Технический результат изобретения заключается в повышении герметичности плиты.

Изобретение относится к гелиотехнике и предназначено для использования при строительстве зданий и сооружений с обогревом за счет солнечной радиации. Солнечная панель здания содержит поглотитель солнечного излучения, размещенный в зазоре, и теплоизоляцию.

Изобретение относится к гелиотехническим устройствам, а именно к адаптируемому к положению естественного источника инфракрасного излучения (Солнца) держателю рабочей поверхности солнечного коллектора.

Изобретение относится к области энергетики. Горная автономная воздушно-тяговая установка, содержащая воздуховод, представляющий собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра.

Группа изобретений относится к солнечным коллекторам и способам их изготовления. Корпус (1) для системы концентрации солнечной энергии содержит трубу (2), выполненную с возможностью содержания теплопередающей среды (10) и содержащую первую часть, выполненную с возможностью быть подверженной воздействию солнечного света, и вторую часть, выполненную с возможностью не быть подверженной воздействию солнечного света.

Изобретение относится к солнечной энергетике. Изобретение представляет собой гелиоэнергетическую систему, включающую не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами либо солнечными батареями на плоских держателях, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, причем солнечные отражатели либо солнечные батареи на плоских держателях выполнены гибкими в виде продольно расположенных относительно держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

Изобретение относится к испарителю для получения пара с помощью магмы вулкана и способу его работы. Испаритель содержит корпус, воронку для отвода осадка, снабженную системой датчиков уровня наполнения, канал подачи воды, канал отвода пара, при этом нижняя часть корпуса, воронка и часть канала подачи воды перед входом в корпус выполнены с возможностью электрического подогрева.

Изобретение относится к гелиотехнике. Концентратор солнечного излучения выполнен в виде тела вращения, внутренняя поверхность которого является отражающей поверхностью, и расположенного под ним приемника излучения.

В предложенной теплогенерирующей системе (1) осуществляется управление избыточной теплоотдачей для увеличения числа мест протекания реакции тепловыделения в ячейках (16) теплогенерирующих элементов, которые генерируют избыточное тепло с помощью реакции тепловыделения, из числа множества ячеек (16) теплогенерирующих элементов, и в результате этого, даже если множество ячеек (16) теплогенерирующих элементов включает ячейку (16) теплогенерирующего элемента, которая не генерирует избыточное тепло вследствие недостаточной реакции тепловыделения, соответствующее количество тепла может быть рекуперировано на выходе путем выполнения компенсации с использованием другой ячейки (16) теплогенерирующего элемента, в которой реакция тепловыделения определенно протекает.

Изобретение относится к солнечной энергетике, в частности к солнечным коллекторам, и предназначено для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов.

Изобретение относится к способам использования извлеченного геотермального тепла для охлаждения грунтов вокруг тоннелей метрополитена и трансформирования его для нагрева воды в системе горячего водоснабжения.

Изобретение относится к гелиотехнике и предназначено для круглосуточного нагрева воздуха до заданной температуры солнечной энергией с целью использования его в бытовых условиях, например в сушильных установках или для обогрева помещений.
Наверх