Способ разведки ледовой обстановки на северном морском пути

Изобретение относится к способам определения ледовой обстановки. Сущность: получают спутниковые радиолокационные снимки, а также текущую и прогнозную информацию о ледовой обстановке, включающую основные характеристики ледового покрытия с учетом гидрометеорологической ситуации в регионе. Рассчитывают толщину льда, используя из баз данных информацию о ледопроходимости судна, скорости хода судна во льдах и в чистой воде. С учетом полученных данных строят оптимальный маршрут следования судна. Технический результат: определение оптимального маршрута следования судна без использования дополнительных технических средств. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам определения навигационных характеристик ледовой обстановки и может быть использовано при выборе маршрута следования судов ледового класса через морские ледовые поля арктических морей.

Общеизвестным способом разведки ледовой обстановки является авиаразведка, при которой на пилотируемых средствах: самолетах или вертолетах регистрируют изображение ледовой обстановки с помощью радиолокационных станций бокового обзора (РЛС БО) и по радиоканалу передают это изображение в оптическом и инфракрасном диапазонах на обеспечивающее судно (Исследование ледяного покрова с помощью радиолокационных станций бокового обзора (РЛС БО). - Л.: Гидрометеоиздат, 1983. - С. 6-9.). Недостатком способа является невозможность его использования в условиях низкой облачности.

Известен способ определения ледовой обстановки по патенту РФ №2425400, МПК G01W 1/08, опубл. 03.12.2008, позволяющий исключить указанный недостаток. Сущность способа заключается в следующем: с обеспечивающего судна высылают по планируемому маршруту движения два беспилотных летательных аппарата (БЛА) с верхним и нижним эшелонами полета. Первый аппарат ведет разведку при помощи установленного на нем оборудования видео-фотосъемки и радара, второй - используемый в качестве ретранслятора, решает проблему дальней связи. Генеральное направление полета аппаратов задают с обеспечивающего судна в соответствии с планируемым маршрутом его движения и оперативными данными разведки, получаемыми по радиоканалу.

Недостатком данного способа является отсутствие возможности объективной оценки такого важного для судоходства параметра, как толщина льда.

В способе по патенту №2631966 этот недостаток устранен за счет того, что первый БЛА осуществляет измерение толщины льда установленным на нем измерительным акустическим аппаратно-программным комплексом с излучающими антеннами путем непосредственного контакта со льдом. При этом с обеспечивающего судна задают необходимые эшелоны полета, а также намечают необходимое число точек контактного измерения посредством видео/радио аппаратного комплекса летательного аппарата. Способ обеспечивает информативность и точность ледовой разведки, однако требует для реализации непосредственного контакта со льдом.

В последние годы одним из основных способов гидрометеорологического обеспечения в Арктике и Антарктике стала спутниковая информация. Ее роль существенно возросла в связи со значительным сокращением наземной сети береговых и островных полярных станций, а также свертыванием деятельности авиационной полярной разведки. Наиболее эффективным средством наблюдений за состоянием ледяного покрова являются спутниковые радиолокационные системы, позволяющие получать информацию независимо от освещенности и наличия облачного покрова. В этом направлении совершенствуется технология спутникового мониторинга состояния ледяного покрова (см. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на северном морском пути: изучение и применение. / Йоханнессен О.М., Александров В.Ю., Фролов И.Е. и др., СПб., Наука, 2007, с. 88-116). При этом особое внимание уделяется автоматической географической привязке спутниковых изображений, их интерпретации и одновременной работе с ними. Такой подход позволяет давать достоверные оценки основных навигационных характеристик ледовых полей. Практически на всех судах есть возможность постоянно получать через сеть интернет электронные ледовые карты и прогнозы непосредственно с сайтов их разработчиков. Современные средства телекоммуникации позволяют быстро передавать спутниковые снимки, ледовые карты, прогноз погоды и т.д. непосредственно на морские суда и отображать данные в электронных навигационных картографических системах.

Известен способ по патенту РФ №2449326 МПК G01W 1/00, опубл. 27.04.2012, включающий получение спутниковых радиолокационных снимков на Северном морском пути, содержащих основные характеристики ледового покрытия, последующий анализ и интерпретацию изображений в бортовом программно-вычислительном комплексе и выделение границ ледовых зон, при этом толщину льда определяют посредством параметрического гидроакустического измерителя путем зондирования ледового образования линейными частотно-модулированными импульсами.

Указанный способ по технической сущности и назначению является наиболее близким аналогом заявляемого изобретения. Недостатком прототипа является необходимость наличия гидроакустического измерителя, осуществляющего измерение толщины льда контактным путем.

Заявляемый способ позволяет решить проблему определения толщины льда не контактным, а расчетным путем.

Для решения указанной проблемы используется следующая совокупность существенных признаков: в способе разведки ледовой обстановки на Северном морском пути, включающем так же, как и прототип, получение спутниковых радиолокационных снимков на основе оперативных и прогнозных данных дистанционного мониторинга ледовой обстановки, содержащих основные характеристики ледового покрытия с учетом гидрометеорологической ситуации в заданном регионе, при этом входящая информация обрабатывается в бортовом программно-вычислительном комплексе, в отличие от прототипа, толщину льда рассчитывают по формуле где Н - толщина льда, h - ледопроходимость судна, V - скорость хода судна во льдах, v - скорость хода судна в чистой воде, при этом данные для расчета получают из баз данных, содержащих информацию о скорости и маршрутах движения судов в заданном географическом регионе, информацию о тактико-технических характеристиках данных судов, а также информацию о динамике ледообразования, типу, возрасту и толщине льда с привязкой по времени и географическому положению.

Заявляемое изобретение позволяет получить подробную информацию о толщине льда в заданном регионе расчетным путем и по полученным результатам построить оптимальный маршрут движения судна выбранного класса в заданном регионе по точкам с допустимыми для данного класса расчетными толщинами льда в пределах генерального направления движения судна. Указанный результат достигается за счет включения в итерационный расчет большого количества архивных вариантов движения судов при различных ледовых условиях (толщине льда, его сплоченности и др.) и данных дистанционного мониторинга ледовой обстановки, архивных и прогнозных климатических данных.

Для реализации способа может быть использован программно-вычислительный комплекс, выполненный в виде специализированного автоматизированного рабочего места. На комплекс по различным каналам связи поступает информация:

о тактико-технических характеристиках судов (ледопроходимость, максимальная скорость в чистой воде и др.) из Регистровой книги Российского морского регистра судоходства (PC) - https://lk.rs-class.org/regbook/regbookVessel?ln=ru, архивная и оперативная информация с периодичностью в одну минуту о маршрутах движения судов (на чистой воде и в различной ледовой обстановке) от автоматической идентификационной системы (АИС) судна (содержит подробную информацию о названии судна, географических координатах, скорости, курсе, осадке и конечной точке движения судна) от сервиса - http://www.scanex.ru/geo-service/AIS-history/ или от сервиса https://www.shippingexplorer.net/ru. В комплексе реализована возможность формирования отдельного слоя геоинформационной системы (ГИС) по выбранным оператором параметрам, таким как: судно или группа судов, период года, географическая местность (широта, долгота), результаты дистанционного зондирования мирового океана, в т.ч. по площади ледовых полей, сплоченности льда от сервисов национального центра данных по снегу и льду - http://nsidc.org или от сервисов системы данных и информации по наблюдения Земли (EOSDIS) - https://earthdata.nasa.gov, информацию о ледовой обстановке в арктических морях, оперативную и прогнозную от суток до месяца, содержащую данные о ледообразовании в течение календарного года, типу льда, его возрасте и толщине - по открытым данным государственного научного центра «Арктический и антарктический научно-исследовательский институт» - http://www.aari.ru или по открытым данным ФГБУ «Администрация Северного морского пути» http://www.nsra.ru/ru/navigatsionnaya_i_gidrometinformatsiya/icecharts.html или по данным монографии Думанской И.О. «Ледовые условия морей азиатской части».

Сопоставление предлагаемого способа и прототипа показало, что поставленная задача - определение толщины льда в ледовых полях арктических морей расчетным путем с целью выбора оптимального пути судна заданного ледового класса в заданном регионе - решается в результате новой совокупности признаков, что доказывает соответствие предлагаемого изобретения критерию патентоспособности «новизна».

Вместе с тем, проведенный информационный поиск в области навигации не выявил решений, содержащих отдельные отличительные признаки изобретения, что позволяет сделать вывод о соответствии заявляемой системы критерию «изобретательский уровень».

Сущность предлагаемого способа поясняется графическими материалами, где на фиг. 1 представлено изображение спутникового радиолокационного снимка района Карского моря с нанесенными на него результатами дистанционного мониторинга ледовой обстановки (сплоченности ледовых полей) в период зимней навигации 2018 года, значениями скоростей и направления движения судов класса ARC7. На рисунке стрелками обозначен курс следования судна, цифрами - скорость движения в узлах;

на фиг. 2 - изображен построенный оптимальный маршрут движения судна YamalMax ледового класса ARC7 в ледовых полях Карского моря с учетом расчетных минимальных толщин льда. На рисунке следующими линиями обозначены: ⎯ границы генерального направления следования судна, ----- оптимальный маршрут следования судна, о - расчетная толщина льда.

Предлагаемый способ выполняется в следующей последовательности.

При планировании перехода судна по заданному маршруту посредством судовой аппаратуры приема и обработки метеорологической спутниковой информации получают параметры гидрометеорологических характеристик по маршруту движения судна. С использованием средств электронной связи (преимущественно сети интернет) получают архивную и оперативную информацию о прошлых маршрутах движения судов, аналогичных по своим тактико-техническим характеристикам выбранному судну. Информация содержит сведения о географических координатах маршрута, скорости, курсе, осадке и конечной точке движения судна в выбранном географическом регионе, перекрывающей планируемый маршрут судна. Также получают результаты дистанционного зондирования мирового океана, в т.ч. по площади ледовых полей, сплоченности льда, получают информацию о ледовой обстановке в арктических морях, архивную, оперативную и прогнозную от суток до месяца, содержащую данные о ледообразовании в течение заданного календарного периода, типу льда, его возрасте и толщине.

Комплекс программно-аппаратных средств обработки, выполненный в виде специализированного автоматизированного рабочего места (АРМ), производит обработку полученной информации. В АРМ все исходные и оперативные данные в графическом виде вносятся в электронную картографическую навигационную информационную систему (ЭКНИС) для соответствующего района плавания судна (фиг. 1), при этом в автоматическом режиме на назначенную оператором ширину по оси планируемого маршрута судна наносятся дополнительные информационные слои, содержащие данные о текущей и прогнозной ледовой обстановке (сплоченности и толщине льда) на даты планируемого перехода судна, а также информация о подобных переходах судов в прошлые периоды с аналогичной климатической картиной, включая их повторяемость. Программными средствами выполняется расчет толщины льда по формуле: где Н - толщина льда, h - ледопроходимость судна, V - скорость хода судна во льдах, v - скорость хода судна в чистой воде. Полученные результаты наносятся на электронную карту (фиг. 2) и далее строится маршрут следования судна выбранного класса в ледовом поле в пределах генерального направления движения судна.

Предлагаемое изобретение было создано специалистами Арктического факультета ФГБОУ ВО «Государственный университет морского и речного флота имени адмирала С.О. Макарова» в составе цикла научно-исследовательских работ.

Были произведены расчеты толщины льда в ледовых полях в период зимней навигации 2017-18 гг. в районе перехода из Баренцева в Карское море в двух географические отдаленных районах: пролив Карские ворота, мыс Желания. Результаты расчетов легли в основу выбора оптимального пути для судов ледового класса ARC7 при переходе из Баренцева в Карское море (вход в акваторию Северного морского пути). Для расчетов использовались данные о движении следующих групп судов:

- проекта YamalMax, ледовый класс ARC7 (максимальная скорость на чистой воде - 19,5 уз., ледопроходимость - 2,1 метра)

- проекта 42К, ледовый класс ARC7 (максимальная скорость на чистой воде - 14,9 уз., ледопроходимость - 1,8 метра)

- проекта «Норильский никель», ледовый класс ARC7 (максимальная скорость на чистой воде - 15,5уз., ледопроходимость - 1,5 метра).

В дальнейшем, способ предполагается использовать для определения оптимального пути для произвольных направлений движения судов ледового класса в акватории всего Северного морского пути в любой период навигации.

Изложенное позволяет сделать вывод о соответствии изобретения критерию «промышленная применимость».

1. Способ разведки ледовой обстановки на Северном морском пути, включающий получение спутниковых радиолокационных снимков, получение оперативных и прогнозных данных дистанционного мониторинга ледовой обстановки, содержащих основные характеристики ледового покрытия с учетом гидрометеорологической ситуации в заданном регионе, при этом полученную информацию обрабатывают в бортовом программно-вычислительном комплексе, отличающийся тем, что толщину льда рассчитывают по формуле , где H - толщина льда, h - ледопроходимость судна, V - скорость хода судна во льдах, ν - скорость хода судна в чистой воде, при этом данные расчета получают из баз данных о скорости движения судов с различными тактико-техническими характеристиками в заданном географическом регионе и паспортных данных судов, а также из баз данных о динамике ледообразования, типе, возрасте и толщине льда с привязкой по времени и географическому положению.

2. Способ по п.1, отличающийся тем, что по результатам расчета толщины льда в заданном регионе строят оптимальный маршрут следования судна выбранного класса по точкам с допустимыми для данного класса расчетными толщинами льда в пределах генерального направления движения судна.



 

Похожие патенты:

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: измеряют плотность потока бета-излучения над снежным покровом в период перед началом таяния снега в дневное время суток не менее чем через 3,5 часа после выпадения снега.

Предлагаемое изобретение относится к технологии мониторинга и прогнозирования повреждений электрической сети при воздействии опасных природных явлений. Способ проведения метеомониторинга и прогнозирования повреждаемости электросетевого оборудования включает прием оперативных метеорологических данных, определение характера опасных для электросетевого хозяйства явлений, мониторинг состояния воздушных высоковольтных линий электропередач, консолидацию и заблаговременную передачу информации о месте возможного возникновения аварийной ситуации и предполагаемого состава и объемов повреждаемого оборудования, определение географического места возникновения неблагоприятных для электросетевого хозяйства явлений, взаимный обмен текущими и прогнозными метеорологическими данными.

Изобретение относится к области метеорологии, а более конкретно к способам определения оптических характеристик атмосферы, и может использоваться, например, для определения оптических параметров аэрозольных частиц в атмосфере.

Изобретение относится к области гидрометеорологии и может быть использовано для мониторинга состояния морского ледяного покрова. Сущность: система включает центр (1) мониторинга, программно-вычислительные средства (6) прогноза сценариев состояния гидросферы и атмосферы, программно-вычислительные средства (7) гидрологического и метеорологического наукастинга, подсистему (8) доступа пользователей и сбора данных, средства (9) коммуникаций.

Изобретение относится к области экологии и может быть использовано для экологического мониторинга атмосферного воздуха промышленного региона. Сущность: система содержит первую и вторую группы датчиков экологического контроля состояния среды, средства радиосвязи датчиков второй группы с аппаратурой городской телефонной сети, центральный диспетчерский пункт, быстродействующие газовые датчики экологического контроля состояния атмосферы, систему GPS, мобильную телефонную систему, установленные на электротранспортных единицах, а также метеостанцию, группу датчиков замеров концентраций загрязняющих веществ непосредственно с источников загрязнения, центр моделирования, центр обработки и сравнения данных, датчики экологического контроля состояния атмосферы, датчики, улавливающие вещества, обладающие эффектом суммации, датчики пыли, телефонный пункт ЖКХ и центр контроля работы светофоров.

Изобретение относится к области радиолокационной метеорологии и может быть использовано для обеспечения метеорологической информацией воздушных судов. Сущность: формируют метеорологическую информацию по всей трассе полета, включая участки взлета-посадки воздушных судов, по данным сетей наземных метеорологических радиолокаторов, грозопеленгаторов и грозорегистраторов, измерителей напряженности электрического поля у поверхности Земли и прочих дистанционных источников метеоинформации.
Изобретение относится к области метеорологии и может быть использовано для управления временем и областью съемки при дистанционном зондировании. Сущность: перед выполнением съемки получают информацию об облачной обстановке.

Группа изобретений относится к способу и системе определения прозрачности атмосферы, а также машиночитаемому носителю данных и может использоваться в метеорологии, в авиации, задачах видеонаблюдения.

Изобретение относится к области цифрового картографирования и может быть использовано для построения цифровых моделей карт характеристик поверхностного снега.

Изобретение относится к области физической океанографии и может быть использовано для предсказания и оценки аномально высоких волн, генерируемых движущимися погодными системами.

Изобретение относится к пассивным системам радиовидения миллиметрового диапазона длин волн, предназначенным для наблюдения за малоразмерными движущимися объектами.

Изобретение относится к области радиолокации и может быть использовано в системах амплитудной суммарно-разностной моноимпульсной радиолокации. Технический результат - уменьшение ошибок при определении угла пеленга цели и снижение требований к точности изготовления и стабильности характеристик каналов прохождения «суммарного» и «разностного» сигналов.

Изобретение относится к радиолокации, может быть использовано для обнаружения и измерения дальности до отражающего объекта. Технический результат заключается в повышении отношения сигнал/шум при увеличении дальности до объекта.

Изобретение относится к геофизике и предназначено для мониторинга природной среды, информационного обеспечения радиосвязи и навигации. Технический результат состоит в проведении зондирования внешней ионосферы с низких орбит КА, используемых в предложенной схеме, и обеспечивает повышение рентабельности и оперативности мониторинга ионосферы и тропосферы.

Изобретение относится к радиолокации и может найти применение в радиолокаторах, которые обеспечивают получение полной поляризационной матрицы (ПМ) рассеивания. Достигаемый технический результат – повышение достоверности распознавания радиолокационных целей.

Изобретение относится к способу одновременного измерения дальности, скорости и ускорения малоскоростной маневрирующей воздушной цели (ВЦ) в импульсно-доплеровских радиолокационных станциях (ИД РЛС) при высокой (ВЧП) частоте повторения импульсов и линейной частотной модуляции (ЛЧМ) в ИД РЛС, предназначенных для обнаружения, измерения первичных радиолокационных траекторных параметров (ПРЛП).

Изобретение относится к радиолокации, а именно к системам определения местоположения воздушных судов многопозиционной неизлучающей системой наблюдения «навигационные спутники - воздушные цели - приемник», в которой для подсвета воздушных целей используются сигналы навигационных спутников глобальных навигационных спутниковых систем (ГНСС).

Способ ранжирования воздушных целей (ВЦ) с учетом их рубежей достижимости и радиусов поражения их авиационных средств поражения (АСП). Достигаемый технический результат - повышение достоверности ранжирования ВЦ.

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации объектов, обнаруживаемых РЛС. Технический результат - повышение вероятности правильной идентификации обнаруженных объектов в условиях наличия нескольких максимумов функции правдоподобия идентификационных признаков к их текущим навигационно-связным оценкам.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров.

Изобретение относится к геофизике и предназначено для мониторинга природной среды, информационного обеспечения радиосвязи и навигации. Технический результат состоит в проведении зондирования внешней ионосферы с низких орбит КА, используемых в предложенной схеме, и обеспечивает повышение рентабельности и оперативности мониторинга ионосферы и тропосферы.
Наверх