Способ определения предельной величины блокирующего напряжения силовых транзисторов

Изобретение относится к области полупроводниковой электроники и может быть использовано для оценки запирающей способности силовых транзисторов, диодов, тиристоров по напряжению как в процессе их производства, так и в условиях эксплуатации. Сущность изобретения заключается в том, что в способе определения предельной величины блокирующего напряжения силовых транзисторов на испытуемый полупроводниковый транзистор, включенный по схеме с общей базой или затвором, подаются испытательные напряжения с линейно возрастающей во времени величиной. Испытательное напряжение имеет форму последовательности однополярных импульсов синусоидальной формы с нарастающей амплитудой и частотой до нескольких килогерц, а величина блокирующего напряжения на транзисторе измеряется в момент достижения выходным напряжением пикового детектора тока утечки силового транзистора заранее заданной величины, после чего происходит снятие с транзистора испытательного напряжения. Изобретение позволяет сократить время измерения, повысить точность определения предельной величины блокирующего напряжения, обеспечить защиту транзистора от пробоя при измерениях. 2 ил.

 

Изобретение относится к области полупроводниковой электроники и может быть использовано для оценки запирающей способности силовых транзисторов, диодов, тиристоров по напряжению как в процессе их производства, так и в условиях эксплуатации.

Значение предельного блокирующего напряжения силового полупроводникового транзистора определяется в зоне резкого изменения крутизны его вольтамперной характеристики (ВАХ) при воздействии высокого напряжения, что накладывает повышенные требования к быстродействию срабатывания защиты и снятию воздействующего напряжения для исключения возможности пробоя транзистора при испытании. Традиционный способ измерения напряжения загиба ВАХ Uбл и защиты транзистора заключается в непрерывном измерении величины тока утечки Iут и отключении напряжения при достижении этим током некоторой заданной величины. Такой способ измерения напряжения загиба (Uбл) отражен в целом ряде публикаций [1-4]. Различия состоят только в технической реализации.

Однако такой способ измерения сопряжен с возможным увеличением погрешности измерения Uбл. Это можно увидеть путем сопоставления двух ВАХ с различным характером изменения IУТ, но с одинаковой величиной Uбл. При малом значении IУCТ для ВАХ 2 вместо истинного значения Uбл1 будет определено значение Uбл2. Увеличивать величину IУCТ опасно, так как в области загиба ВАХ при достаточно большом значении IУТ=IУCТ и испытательного напряжения тепловой режим испытуемого транзистора становится более напряженным и скорость лавинообразного развития тока может превысить критическое значение, что приводет к повреждению транзистора. Поэтому в известных решениях предложены способы измерения Uбл (область лавинного пробоя), основанные на измерении скорости изменения сопротивления транзистора, то есть на измерении производной di/du. Такие решения предложены в патентах [5].

Известен способ диагностики полупроводниковых изделий по производным ВАХ, где предложено измерять напряжения загиба Uбл на BAX при двух разных температурах по которым вычисляются максимальные значения напряжения Uбл по первым и вторым производным ВАХ. По результатам измерений вычисляется коэффициент K, характеризующий различие пробивных напряжений при двух температурах и служащий для выявления потенциально ненадежных образцов (RU 2348941, МПК G01R 31/26, опубл. 26.06.2007).

Недостатком известного способа является создание внешнего дестабилизирующего воздействия (например, температуры), которое требует дополнительного оборудования для тестирования транзистора, больших затрат энергии на нагрев исследуемого транзистора и связанные с этим увеличение длительности измерения.

Известен способ определения напряжения локализации тока в мощных высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) биполярных транзисторах, где предлагается использовать эффект резкого изменения крутизны зависимости напряжения на переходе эмиттер-база Uэб – при постоянном коллекторном токе от величины коллекторного напряжения. Для повышения точности измерения на коллектор транзистора подается сумма линейно нарастающего напряжения и низкочастотного переменного напряжения с малой амплитудой. При трех разных значениях коллекторного напряжения (Uк) измеряют амплитуду переменной составляющей напряжения на переходе база – эмиттер Uбэ и по предложенной формуле вычисляют искомое напряжение локализации тока, которое и характеризует величину предельного блокирующего напряжения для испытуемого транзистора (RU 2537519, МПК G01R 31/26, опубл. 19.07.2013).

К недостаткам известного способа можно отнести следующее.

1. Поскольку для определения Uбл применяется интерполяционный способ, основанный на измерении амплитуд малого переменного напряжения на транзисторе при трех достаточно произвольных значениях напряжения Uкэ то уже изначально закладывается возможность появления ошибки в измерен Uбл. Для повышения точности измерения, авторы предлагают подбирать значения испытательных напряжений U0, U1, U2;

2. В устройстве управления предполагается запоминать три измеренных значения напряжения и по ним в вычислительном устройстве оценивать искомую величину напряжения Uбл;

3. В сумматоре мощности предполагается формирование по линейному закону достаточно высокого испытательного напряжения с наложением на него небольшого по величине переменного напряжения, что также усложняет техническое решение устройства. Кроме этого, ужесточается тепловой режим испытуемого транзистора, что приводит к росту ошибки измерения;

4. В устройстве предполагается использование «современных плат сбора данных» что, возможно, повышает точность измерения, но усложняет техническое решение;

5. К исследуемому транзистору прикладывается знакопеременное (синусоидальное) напряжение с возрастающей амплитудой. Это допустимо при испытании тиристоров или транзисторов с двухсторонней ВАХ. Для IGBT транзисторов с внутренним обратным диодом это недопустимо. Поэтому испытательное напряжение должно быть однополярным.

В связи с вышеуказанными недостатками устройство больше подходит для проведения лабораторных исследовании, чем измерений в производственных условиях.

Технический результат заключается в сокращении времени измерения, повышении точности определения предельной величины блокирующего напряжения, обеспечении защиты транзистора от пробоя при измерениях.

Сущность изобретения заключается в том, что в способе определения предельной величины блокирующего напряжения силовых транзисторов на испытуемый полупроводниковый транзистор, включенный по схеме с общей базой или затвором, подается испытательные напряжения с линейно возрастающей во времени величиной. Испытательное напряжение имеет форму последовательности однополярных импульсов синусоидальной формы с нарастающей амплитудой и частотой до нескольких килогерц, а величина блокирующего напряжения на транзисторе измеряется в момент достижения выходным напряжением пикового детектора тока утечки силового транзистора заранее заданной величины, после чего происходит снятие с транзистора испытательного напряжения.

На фиг. 1 показана структура устройства для измерения величины блокирующего напряжения, на фиг. 2 представлен график ВАХ силового полупроводникового транзистора.

Устройство (фиг. 1) содержит генератор синусоидального напряжения 1 выход, которого подключен к первому входу амплитудного модулятора 2. Генератор линейно нарастающего напряжения (ГЛИН) 3 подключен ко второму входу амплитудного модулятора 2. Выход амплитудного модулятора 2 подключен к усилителю мощности 4. Выход усилителя мощности 4 подключен к выпрямителю 5, выход которого подключается к отключающему элементу 6. Первый выход с отключающего элемента 6 подключен к силовому транзистору 7, второй выход подключается к вольтметру 8. Выход 1 силового транзистора 7 подключен к сопротивлению 9, выход 2 к пиковому детектору 10. Выход пикового детектора 10 подключается к входу компаратора 11. Первый выход компаратора 10 подключен к вольтметру 8, второй выход идет к внешним измерительным устройствам, третий выход подключается к устройству защиты 12. Выход устройства защиты 12 подключается к отключающему элементу 6.

Способ определения предельной величины блокирующего напряжения на ВАХ силовых транзисторов (фиг. 2) работает следующим образом. Испытательное напряжение формируется в устройстве, содержащем генератор синусоидального напряжения с частотой, ГЛИН 3, амплитудный модулятор 2, позволяющий изменять амплитуду колебаний по закону изменения выходного напряжения ГЛИН 3, усилителя мощности 4, выпрямителя 5 и пикового детектора 10, позволяющих определять момент загиба ВАХ.

Усилитель мощности позволяет увеличивать амплитуду импульсов испытательного напряжения до величины 1,5-2 кВ, что достаточно для большинства типов транзисторов. Для испытания силовых транзисторов требуется только положительная полуволна синусоидального напряжения. Эту операцию обеспечивает выпрямитель 5. Последовательно с испытуемым силовым транзистором 7 включено сопротивление 9, напряжение на котором, пропорционально току утечки силового транзистора 7. Это напряжение через пиковый детектор 10 подается на первый вход компаратор 11, на второй вход которого подается заданное опорное напряжение, пропорциональное предельно допустимому току утечки для данного типа силовых транзисторов. Когда величина испытательного напряжения достигает зоны загиба ВАХ, сопротивление испытуемого силового транзистора 7 резко падает, а ток утечки и напряжение на сопротивление 9 возрастает. В момент, когда напряжение на входах компаратора 11 сравняются, с выхода 1 поступает команда на измерение напряжения на испытуемом силовом транзисторе 7, с выхода 3 компаратора 11 сигнал на включение устройства защиты 12 и отключающего элемента 6.

По сравнению с известным решением предлагаемое позволяет сократить время измерения, повысить точность определения предельной величины блокирующего напряжения, обеспечить защиту транзистора от пробоя при измерениях.

Источники информации

1. Бардин В. М. Надежность Силовых полупроводниковых приборов / В.М. Бардин. – М.: Энергия, 1978 – 96 с.

2. Бардин В. М. Основные направления работ в области надежности силовых полупроводниковых приборах / В. М. Бардин, Д. П. Новиков // Практическая силовая электроника. – 2005. – № 2. – С. 36-42.

3. Кравченко Е. В. О методах оценки надежности полупроводниковых устройств силовой электротехники / Е. В. Кравченко // Современные техника и технологии: сборник трудов XX международной научно-практической конференции студентов, аспирантов и молодых ученых. – Томск: Изд-во ТПУ. – 2014. – Т. 1. – С. 25-26.

4. Горлов М. И. Современные диагностические методы контроля качества и надежности полупроводниковых изделий / М. И. Горлов, В. А. Сергеев; под науч. ред. М. И. Горлова // – 2-е изд. – Ульяновск: УлГТУ. – 2015. – 406 с.

5. Громов В. Вопросы контроля и обеспечения надежности ИЭТ для силовой электроники / В. Громов, И. Илюшкин // Силовая электроника. – 2005. – №2. – С. 18-19.

Способ определения предельной величины блокирующего напряжения силовых транзисторов, заключающийся в том, что на испытуемый полупроводниковый транзистор, включенный по схеме с общей базой или затвором, подают испытательные напряжения с линейно возрастающей во времени величиной, отличающийся тем, что испытательное напряжение имеет форму последовательности однополярных импульсов синусоидальной формы с нарастающей амплитудой и частотой до нескольких килогерц, а величину блокирующего напряжения на транзисторе измеряют в момент достижения выходным напряжением пикового детектора тока утечки силового транзистора заранее заданной величины, после чего происходит снятие с транзистора испытательного напряжения.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения.

Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения.

Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения.

Изобретение относится к технике измерения тепловых параметров компонентов силовой электроники и может быть использовано для определения переходного теплового сопротивления кристалл-корпус ZThJC(t) и теплового сопротивления кристалл-корпус в состоянии теплового равновесия RThJC транзисторов с полевым управлением, в частности биполярных транзисторов с изолированным затвором (IGBT) и полевых транзисторов с изолированным затвором (MOSFET) для контроля их качества.

Изобретение относится к технике измерения тепловых параметров компонентов силовой электроники и может быть использовано для определения переходного теплового сопротивления кристалл-корпус ZThJC(t) и теплового сопротивления кристалл-корпус в состоянии теплового равновесия RThJC транзисторов с полевым управлением, в частности биполярных транзисторов с изолированным затвором (IGBT) и полевых транзисторов с изолированным затвором (MOSFET) для контроля их качества.

Использование: для разбраковки ИС класса «система на кристалле» по критерию потенциальной надежности. Сущность изобретения заключается в том, что на представительной выборке ИС класса «система на кристалле» измеряют значения критических напряжений питания (КНП) отдельно для каждого функционального блока ИС при различных температурах (например, при 25°С, 50°С, 75°С и верхней допустимой для ИС данного класса температуре), строят графики усредненных по выборке зависимостей значений КНП от температуры для каждого функционального блока.

Использование: для оценки скорости поверхностной рекомбинации неравновесных носителей заряда полупроводников. Сущность изобретения заключается в том, что метод оценки скорости поверхностной рекомбинации неравновесных носителей заряда в полупроводниках типа CdS, основанный на зависимости структуры спектра фотопроводимости от величины и знака напряженности электрического поля на поверхности полупроводника, отличается тем, что скорость поверхностной рекомбинации полупроводника определяется по форме спектральной кривой фототока в области экситонных резонансов.

Изобретение относится к области технической диагностики и может быть использовано для автоматизированного бесконтактного диагностирования технического состояния радиоэлектронных устройств (РЭУ) различных типов.

Изобретение относится к области технической диагностики и может быть использовано для автоматизированного бесконтактного диагностирования технического состояния радиоэлектронных устройств (РЭУ) различных типов.

Изобретение относится к области измерительной техники и касается способа измерения температуры активной области светодиода. Способ заключается в том, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника и температуру активной области светодиода определяют по изменению центральной длины волны излучения.

Изобретение относится к электроизмерительной технике, в частности к измерению наведенных токов в резистивном элементе электровзрывного устройства. Сущность: система содержит устройство формирования сигнала наведенного тока, дуплексную волоконно-оптическую линию связи и преобразователь интерфейса для связи с компьютером.

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов.

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов.

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте.

Изобретение относится к импульсной технике и может быть использовано в устройствах автоматики и силовой техники для детектирования, а также для определения канала с экстремальным напряжением и его полярности.

Изобретение относится к области электрорадиотехники и может быть использовано в качестве многофункционального пикового детектора. .

Изобретение относится к устройствам измерительной техники и может быть использовано для измерения напряжений в диапазонах крайне низких, сверхнизких, инфранизких и очень низких частот.

Изобретение относится к радиолокационной телевизионной и измерительной технике. .

Изобретение относится к способам работы датчиков тока с гальванической развязкой без дополнительного питания и может использоваться как способ работы датчика для измерения импульсного однополярного тока.

Изобретение относится к электроизмерительной технике, в частности к измерениям больших постоянных и переменных токов. .
Наверх