Способ определения равновесных термобарических условий образования и диссоциации газовых гидратов

Изобретение относится к способам определения равновесных термобарических условий образования и диссоциации газовых гидратов, нахождение которых является важным при предотвращении образования и ликвидации техногенных гидратов, а также добычи газа на месторождениях природных гидратов. Предлагаемый способ определения равновесных термобарических условий образования и диссоциации газовых гидратов включает определение компонентного состава гидратообразующих газов, входящих в смесь, ее исходных температуры или давления, а равновесные температуру или давление рассчитывают по соответствующим формулам для двух диапазонов, разделенных граничной температурной точкой, причем величину граничной температурной точки определяют по формуле

где Т - величина граничной температурной точки, К; Ма и MG - молекулярные массы воздуха и газа-гидратообразователя; Р - исходное давление смеси, МПа. Технический результат - повышение точности нахождения равновесных термобарических условий образования и диссоциации газовых гидратов. 1 ил.

 

Изобретение относится к способам определения равновесных термобарических условий образования и диссоциации газовых гидратов, нахождение которых является важным при предотвращении образования и ликвидации техногенных гидратов, а также добычи газа на месторождениях природных гидратов.

Известен способ определения термобарических параметров образования гидратов в многокомпонентной газовой смеси (патент РФ №2625544), включающий определение ее компонентного состава из гидратообразующих газов, входящих в смесь, и температуры образования гидратов, а давления образования в ней гидратов по расчетным формулам, связывающим эти параметры, в двух температурных диапазонах, в который попадает величина температуры смеси, первый диапазон - от 80 до 273,15 К, второй - от 273,15 (включительно) до 320 К.

Общими признаками известного и предлагаемого способов является определение компонентного состава гидратообразующих газов, входящих в смесь, и температуры образования гидратов, а давления образования в ней гидратов по расчетным формулам, связывающим эти параметры, в двух температурных диапазонах до граничной точки и после нее.

Основным недостатком этого способа являются расхождения расчетных и экспериментальных величин при повышенных барических параметрах гидратообразования в районе граничной точки - 273,15 К.

Известен способ определения термобарических параметров образования гидратов в многокомпонентной смеси (патент РФ №2667699), включающий определение ее компонентного состава из гидратообразующих газов, давления образования гидратов из каждого компонента в граничной точке 273,15 К между двумя барическими диапазонами, в которые входит величина давления многокомпонентной смеси, а температуру образования в ней гидратов по расчетным формулам, связывающим эти параметры, в этих диапазонах.

Общими признаками известного и предлагаемого способов является определение компонентного состава гидратообразующих газов, входящих в смесь, и давления образования гидратов из каждого компонента в граничной точке между двумя барическими диапазонами, в которые входит величина давления многокомпонентной смеси, а температуру образования в ней гидратов по расчетным формулам, связывающим эти параметры, в этих диапазонах.

Основным недостатком этого способа являются расхождения расчетных и экспериментальных величин температуры образования гидратов при повышенных барических параметрах.

Задачей предлагаемого изобретения является усовершенствование способа определения равновесных термобарических условий образования и диссоциации газовых гидратов.

Техническим результатом является повышение точности нахождения равновесных термобарических условий образования и диссоциации газовых гидратов.

Технический результат достигается тем, что в способе определения равновесных термобарических условий образования и диссоциации газовых гидратов, включающем определение компонентного состава гидратообразующих газов, входящих в смесь, ее исходных температуры или давления, а равновесные температуру или давление рассчитывают по соответствующим формулам для двух диапазонов разделенных граничной температурной точкой, новым является то, что величину граничной температурной точки определяют по формуле

где Т - величина граничной температурной точки, К;

Ма и МG - молекулярные массы воздуха и газа-гидратообразователя;

Р - исходное давление смеси, МПа.

Технический прием, заключающийся в определении величины граничной температурной точки по формуле позволяет ее рассчитывать с точностью до 0,01 K в диапазоне давлений Р=0,00061173-212,9 МПа и, как следствие, получать равновесные термобарические условия образования и диссоциации газовых гидратов с повышенной точностью.

Авторам не известны определения равновесных термобарических условий образования и диссоциации газовых гидратов подобным образом.

Практическая реализация предлагаемого способа определения равновесных термобарических условий образования и диссоциации газовых гидратов, представлена примером.

ПРИМЕР

По формуле определили величину граничной температурной точки от давления и молекулярной массы газовой смеси. Полученные зависимости представлены в виде графиков на фигуре. Величина граничной температурной точки существенно снижается с повышением давления и уменьшением молекулярной массы газовой смеси. Учет этих факторов соответствующим образом повышает точность определения равновесных термобарических условий образования и диссоциации газовых гидратов.

Способ определения равновесных термобарических условий образования и диссоциации газовых гидратов, включающий определение компонентного состава гидратообразующих газов, входящих в смесь, ее исходных температуры или давления, а равновесные температуру или давление рассчитывают по соответствующим формулам для двух диапазонов, разделенных граничной температурной точкой, отличающийся тем, что величину граничной температурной точки определяют по формуле

где Т - величина граничной температурной точки, К;

Ма и MG - молекулярные массы воздуха и газа-гидратообразователя;

Р - исходное давление смеси, МПа.



 

Похожие патенты:

Предложен способ и измерительное устройство для определения параметров качества газа, в котором газ или газовая смесь протекает как через ультразвуковой расходомер (4), так и через микротермический датчик (7), и первый используют для определения скорости звука и течения, а с помощью второго определяют теплопроводность и теплоемкость газа или газовой смеси.

Изобретение относится к области исследования ударной сжимаемости и оптических свойств материалов за сильными ударными волнами при числах Маха более 5. Устройство ударного сжатия малоплотных сред посредством формирования квазистационарного Маховского режима отражения от оси содержит цилиндрический пустотелый заряд взрывчатого вещества, инициируемый гиперзвуковой по отношению к ВВ системой последовательного инициирования.

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе.

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей.

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов.

Изобретение относится к анализатору жидкости, в частности, к содержащему потоковую систему для перемещения жидкости в измерительную область и из нее, более конкретно, к анализатору жидкости, выполненному с возможностью выработки спектров пропускания и/или отражения жидкости в средней инфракрасной области, которые используют в анализе состава жидкости.

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов.

Изобретение предназначено для определения в скважинных условиях содержания свободного газа в потоке скважинной продукции на приеме глубинного насоса. Техническим результатом является обеспечение защиты ЭЦН и его работы в оптимальном режиме в системе «пласт-скважина-насос».

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Способ, реализуемый в цилиндрическом устройстве, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, а вдоль оси устройства расположен цилиндрический металлический стержень, включает квазиизэнтропическое нагружение газа, находящегося во внутренней коаксиальной полости устройства, фиксирование движения оболочки, сжимающей исследуемый газ, определение размеров оболочки и стержня в момент максимального сжатия газа.

Изобретение относится к способам контроля процесса осушки природного и попутного газа и может быть использовано в нефтегазовой промышленности, где в производственном процессе для осушки газа применяется моно-, ди-, триэтиленгликоль (далее - абсорбент).

Изобретение относится к области контроля качества топлив и может быть использовано для определения температуры помутнения дизельных топлив. Способ заключается в том, что анализируемый образец вводят в измерительную ячейку, размещают ее в криостатированную камеру, в которой образец предварительно нагревают, а затем подвергают не менее пяти циклам «охлаждение-нагрев», поддерживая в каждом цикле разную скорость изменения температуры и записывая для каждого цикла «охлаждение-нагрев» кривую зависимости, показывающую изменение удельного теплового потока, поступающего из образца при его охлаждении и получаемого образцом при его нагревании, как функцию температуры, на каждой из которых фиксируют температуру начала кристаллизации (ТнкVi) анализируемого образца, температуру застывания (ТзVi) и температуру окончания плавления твердой фазы (ТопVi).

Изобретение относится в измерительной техники, а именно к способам неразрушающего контроля объектов в микро- и наноэлектронике. В способе определения температур фазовых переходов в пленках и скрытых слоях многослойных структур нанометрового диапазона толщин нагреваемый образец облучают потоком выходящего из источника рентгеновского излучения и осуществляют регистрацию отраженного от поверхности образца излучения.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при трех температурах, выбранных в зависимости от базовой основы и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, конкретно к способам определения температуры стеклования Tc, температуры α-перехода Tα температуры начала перехода из стеклообразного состояния в высокоэластичное Tнп и теплостойкости.

Изобретение относится к области измерительной техники и может быть использовано для обнаружения парафинизации дизельного топлива в топливном баке в автотранспортном средстве.

Изобретение относится к области термического анализа и может быть использовано для определения фазовых переходов извлеченной из стального расплава пробы. Заявлен погружной зонд, имеющий погружной конец измерительной головки, в которой расположены имеющая впускной канал пробоотборная камера и выступающая своим горячим спаем в пробоотборную камеру термопара, которая имеет кабельный ввод для сигнальных кабелей термопары.
Изобретение относится к технической физике и может быть использовано при определении температурной зависимости вязкости высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni.

Изобретение относится к исследованию материалов с помощью тепловых средств, а именно к идентификации промежуточных фаз в монокристаллах силикатов. .

Изобретение относится к исследованию фазовых превращений в раствор-расплавных средах, а именно, к способам определения температуры начала кристаллизации в раствор-расплаве (температуры ликвидус).

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к способам определения равновесных термобарических условий образования и диссоциации газовых гидратов, нахождение которых является важным при предотвращении образования и ликвидации техногенных гидратов, а также добычи газа на месторождениях природных гидратов. Предлагаемый способ определения равновесных термобарических условий образования и диссоциации газовых гидратов включает определение компонентного состава гидратообразующих газов, входящих в смесь, ее исходных температуры или давления, а равновесные температуру или давление рассчитывают по соответствующим формулам для двух диапазонов, разделенных граничной температурной точкой, причем величину граничной температурной точки определяют по формуле где Т - величина граничной температурной точки, К; Ма и MG - молекулярные массы воздуха и газа-гидратообразователя; Р - исходное давление смеси, МПа. Технический результат - повышение точности нахождения равновесных термобарических условий образования и диссоциации газовых гидратов. 1 ил.

Наверх