Линейный электродвигатель

Изобретение относится к области электротехники, в частности к линейным электродвигателям. Технический результат – улучшение массогабаритных характеристик, повышение силы тяги, а также повышение КПД. Линейный электродвигатель содержит статор, состоящий из магнитного корпуса, в котором расположена намагничивающая катушка, создающая магнитный поток. Катушка установлена на немагнитном каркасе. Электродвигатель включает верхний магнитный полюс, сечение которого имеет форму прямоугольной трапеции, торцевой магнитный полюс и нижний магнитный полюс, имеющий выборку в виде цилиндра, а также немагнитную вставку. Якорь электродвигателя состоит из верхнего магнитопровода, имеющего форму усеченного конуса, нижнего магнитопровода, немагнитной втулки, насаженных на немагнитный стержень. Якорь установлен в статоре при помощи немагнитного каркаса и немагнитной вставки, выполняющих роль подшипников скольжения, а также возвратной пружины, шайбы и гайки. 3 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к электрическим машинам, в частности к линейным электродвигателям, которые находят широкое применение в дискретном электроприводе.

Уровень техники

Известен линейный электродвигатель, состоящий из статора с намагничивающими катушками и бегуна, выполненных из чередующихся магнитных и немагнитных колец и прилегающих к рабочим воздушным зазорам магнитных и немагнитных элементов вблизи каждой намагничивающей катушки, нижний предел отношения радиального и осевого размеров немагнитного элемента в осевом сечении равен 0,5:1, при чем, верхний предел указанного отношения достигает значения 1:1 (см. патент РФ №2031518, Кл. Н02К 33/02, опубл. 20.03.1995).

Недостатком известной конструкции является низкая эффективность магнитной системы на единицу массы и мощности, а следовательно, и низкий коэффициент полезного действия.

Известен линейный электродвигатель, содержащий якорь, установленный в немагнитной направляющей втулке, намагничивающую обмотку и магнитопровод, включающий цилиндрическое ярмо, верхний кольцевой полюс и нижний кольцевой полюс, снабженный обхватывающим немагнитную направляющую втулку ферромагнитным цилиндром, с целью повышения плавности хода якоря, между верхним кольцевым полюсом и ферромагнитным цилиндром установлена ферромагнитная вставка в виде втулки, причем толщина верхнего кольцевого полюса и стенки ферромагнитной вставки в 5-10 раз меньше толщины стенки обхватывающего немагнитную направляющую втулку ферромагнитного цилиндра (См. авторское свидетельство СССР №743132, Кл. Н02К 33/02, опубл. 25.06.1980).

Недостатком известной конструкции является: конструкция является нетехнологичной и трудоемкой при изготовлении, обладает большими массогабаритными показателями, и низким коэффициентом полезного действия.

Наиболее близким по технической сущности и достигаемому эффекту и принятый авторами за прототип является линейный электродвигатель, состоящий из статора, собранного из магнитных и немагнитных элементов и намагничивающих катушек, якоря, выполненного из чередующихся магнитных и немагнитных колец, при чем, форма сечения торцов основных и промежуточных полюсов статора имеет вид усеченной неравнобедренной трапеции, образованной двумя фасками под внешними углами 45 и 60°, прилегающими к поверхностям немагнитной вставки статора и якоря и образующими соотношение толщины сечения магнитопровода статора к вершине усеченной трапеции торца полюсов статора 4:1; форма сечения торцов магнитных колец якоря имеет вид неправильного прямоугольника, образованного фасками под внешним углом 60°, прилегающими к внутренней поверхности статора при соотношении длины торца магнитных колец якоря к их максимальной длине 1:4. (см. патент РФ №2361353, Кл. Н02К 41/03, опубл. 10.07.2009).

Недостатком конструкции линейного электродвигателя являются большие массогабаритные показатели, малая сила тяги, низкий коэффициент полезного действия.

Раскрытие изобретения

Задачей изобретения является - разработка линейного

электродвигателя, обладающего сниженными массогабаритными показателями, повышенной силой тяги, повышенным коэффициентом полезного действия.

Технический результат, который может быть получен с помощью предлагаемой конструкции, сводится к улучшению массогабаритных показателей, повышению силы тяги, а так же повышению коэффициента полезного действия, за счет изменения длины воздушных зазоров, практически до нуля, посредством устранения шунтирующих магнитных потоков.

Технический результат достигается тем, что линейный электродвигатель, содержащий статор, магнитный корпус, намагничивающую катушку, при этом он дополнительно снабжен немагнитным каркасом, с установленным на нем верхним магнитным полюсом, сечение которого имеет форму прямоугольной трапеции, торцевым магнитным полюсом, нижним магнитным полюсом, имеющий выборку в виде цилиндра, закрепленные при помощи болтов к магнитному корпусу, при этом якорь располагающийся в статоре при помощи немагнитного каркаса и немагнитной вставки, выполнен с возможностью роли подшипников скольжения, и состоит из верхнего магнитопровода имеющего форму усеченного конуса, нижнего магнитопровода и немагнитной втулки насаженных на немагнитный стержень, а так же из возвратной пружины, установленной между торцевым магнитным полюсом и шайбой, закрепленной гайкой.

Краткое описание чертежей

На фиг. 1 - представлен общий вид линейного электродвигателя.

На фиг. 2 - представлен разрез линейного электродвигателя с нанесением

основных магнитных потоков в начале рабочего хода.

На фиг. 3 - представлен разрез линейного электродвигателя с нанесением основных магнитных потоков в конце рабочего хода.

Осуществление изобретения

Линейный электродвигатель (см. фиг. 1) содержит статор 1, который состоит из магнитного корпуса 2, в котором расположена намагничивающая катушка 3, создающая магнитный поток Ф, установленная на немагнитном каркасе 4, верхнего магнитного полюса 5, сечение которого имеет форму прямоугольной трапеции, торцевого магнитного полюса 6, закрепленного при помощи болта 7 и нижнего магнитного полюса 8, имеющего выборку в виде цилиндра, закрепленного при помощи болта 9 к магнитному корпусу 2, а так же немагнитной вставки 10. Якорь 11 линейного электродвигателя состоит из верхнего магнитопровода 12, имеющего форму усеченного конуса, нижнего магнитопровода 13, немагнитной втулки 14, насаженных на немагнитный стержень 15. Якорь 11, который установлен в статоре 1 при помощи немагнитного каркаса 4 и немагнитной вставки 10, выполняющий роль подшипников скольжения, возвратной пружины 16, шайбы 17 и гайки 18.

Предлагаемый линейный электродвигатель работает следующим образом (см. фиг. 1, 2, 3): при отсутствии питания намагничивающей катушки 3, якорь И занимает верхнее положение под действием возвратной пружины 16. При подачи на намагничивающую катушку 3 напряжения, по ней начинает протекать ток, создающий магнитный поток Ф замыкающийся через магнитный корпус 2, торцевой магнитный полюс 6, верхний магнитопровод 12, верхний магнитный полюс 5, нижний магнитопровод 13 и нижний магнитный полюс 8. Магнитный поток Ф на границе верхнего магнитопровода 12 и воздушного зазора длиной Δ1 разделяется на рабочий поток Ф1, проходящий через воздушный зазор длиной Δ1 и шунтирующий магнитный поток Ф, проходящий по немагнитной втулке 14, далее эти магнитные потоки суммируются в верхнем магнитном полюсе 5. Проходя по верхнему магнитному полюсу 5 на уровне начала нижнего магнитопровода 13 магнитный поток Ф разделяется на рабочий магнитный поток Ф2.1, проходящий по верхнему магнитному полюсу 5 и рабочий магнитный поток Ф2.2, проходящий по нижнему магнитопроводу 13, в котором они суммируются. Магнитный поток Ф на границе нижнего магнитопровода 13 и воздушного зазора длиной Δ2, разделяется на рабочий магнитный поток Ф3, проходящий через воздушный зазор длиной Δ2 и шунтирующий магнитный поток Ф, проходящий по немагнитной вставке 10, далее эти магнитные потоки суммируются в нижнем магнитном полюсе 8. Разделение магнитного потока Ф на рабочий магнитный поток Ф1 и шунтирующий магнитный поток Ф1δ, происходит из-за наличия воздушного зазора длиной Δ1 соизмеримости магнитного сопротивления воздушного зазора и немагнитной втулки 14, а так же формы сечения верхнего магнитопровода 12 в виде усеченного конуса и верхнего магнитного полюса 5 в виде прямоугольной трапеции. Разделение магнитного потока Ф на рабочие магнитные потоки Ф2.1 и Ф2.2 происходит из-за соизмеримости магнитного сопротивления верхнего магнитного полюса 5 и нижнего магнитопровода 13. Разделение магнитного потока Ф на рабочий магнитный поток Ф3 и шунтирующий магнитный поток Ф возникает из-за соизмеримости магнитных сопротивлений воздушного зазора длиной Δ2 и немагнитной вставки 10. В результате прохождения рабочих магнитных потоков Ф1 Ф2.1, Ф2.2, Ф3 возникает электромагнитная сила, которая приводит к перемещению якоря 11 в нижнее положение. При достижении якорем 11 нижнего положения (см. фиг. 3), длина Δ1 и Δ2 воздушных зазоров стремится к нулю, при этом магнитный поток Ф в месте стыкового соединения верхнего магнитопровода 12 и верхнего магнитного полюса 5 не разделяется из-за значительно меньшего магнитного сопротивления по сравнению с магнитным сопротивлением немагнитной втулки 14. Проходя по верхнему магнитному полюсу 5, магнитный поток Ф переходит в нижний магнитопровод 13 из-за значительно большего магнитного сопротивления немагнитной вставки 10 по сравнению с магнитным сопротивлением нижнего магнитопровода 13. В нижней части нижнего магнитопровода 13, который заходит в выборку в виде цилиндра нижнего магнитного полюса 8, магнитный поток Ф разделяется на два рабочих магнитных потока Ф3.1 и Ф3.2. За счет наличия воздушных зазоров длиной Δ1 и Δ2 немагнитной втулки 14, а также немагнитной вставки 10, позволяет получить наиболее эффективное использование магнитного потока Ф в верхнем положении якоря 11. При переходе от верхнего к нижнему положению якоря 11 изменяется длина воздушных зазоров Δ1 и Δ2 практически до нуля, при этом исчезают шунтирующие магнитные потоки Ф1.1δ и Ф, магнитный рабочий поток Ф разделяется на рабочие магнитные потоки Ф3.1 и Ф3.2 при заходе нижнего магнитопровода 13 в выборку в виде цилиндра нижнего магнитного полюса 8, что способствует повышению силы тяги, увеличению коэффициента полезного действия, обеспечению необходимой плавности хода якоря и улучшению массогабаритных показателей. После отключения напряжения от намагничивающей катушки 3 исчезает магнитный поток Ф, а следовательно рабочие магнитные потоки Ф3.1 Ф3.2, при этом якорь 11 под действием возвратной пружины 16 возвращается в верхнее положение.

По сравнению с прототипом и другими известными техническими решениями предлагаемый линейный электродвигатель имеет ряд преимуществ:

- за счет оптимальной формы элементов магнитной системы, улучшаются массогабаритные показатели;

- за счет формы верхнего магнитопровода в виде усеченного конуса и верхнего магнитного полюса, в сечении имеющего форму прямоугольной трапеции, а так же нижнего магнитного полюса имеющего выборку в виде цилиндра, повышается сила тяги;

- за счет изменения длины воздушных зазоров, практически до нуля, устраняя шунтирующие магнитные потоки, увеличивается коэффициент полезного действия.

Линейный электродвигатель, содержащий статор, магнитный корпус, намагничивающую катушку, отличающийся тем, что он дополнительно снабжен немагнитным каркасом с установленным на нем верхним магнитным полюсом, сечение которого имеет форму прямоугольной трапеции, торцевым магнитным полюсом, нижним магнитным полюсом, имеющим выборку в виде цилиндра, закрепленными при помощи болтов к магнитному корпусу, при этом якорь, располагающийся в статоре при помощи немагнитного каркаса и немагнитной вставки, выполнен с возможностью роли подшипников скольжения и состоит из верхнего магнитопровода, имеющего форму усеченного конуса, нижнего магнитопровода и немагнитной втулки, насаженных на немагнитный стержень, а также из возвратной пружины, установленной между торцевым магнитным полюсом и шайбой, закрепленной гайкой.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в автоматизированных электроприводах с колебательным движением рабочего органа. Технический результат - повышение надежности работы электропривода.

Изобретение относится к электротехнике. Технический результат состоит в снижении габаритов, повышении технологичности и надежности.

Изобретение относится к области машиностроения, а более конкретно к шарнирно-рычажным механизмам. Шарнирно-рычажный механизм с регулируемой длиной звеньев содержит шарнирно соединенные с неподвижной стойкой (1) и шатуном (2) ведущий кривошип (4) и ведомое коромысло (6), вращающееся вокруг шарнира (5).

Изобретение относится к области электротехники, в частности к приводному устройству. Технический результат – повышение эффективности.

Изобретение относится к электротехнике, а именно к электрическим приводам с импульсными электромагнитными двигателями возвратно-поступательного действия. Импульсный электромагнитный привод состоит из линейного электромагнитного двигателя с устройством удержания якоря, содержащего цилиндрический статор (1) с обмоткой возбуждения (2), комбинированный якорь (3), возвратную пружину (4) с предварительным поджатием, направляющий корпус (5), устройство питания (8), шунтирующий диод (9) и устройство управления (10).

Изобретение относится к прессовому оборудованию, в котором давление плунжеру или плите передается электрическим приводом с импульсным электромагнитным двигателем.

Изобретение относится к технике защиты информации, при которой осуществляется уничтожение информации как на основании получения сигналов о попытке несанкционированного проникновения, так и по желанию пользователя.

Изобретение относится к электрофизике. Технический результат состоит в снижении момента инерции во время колебания.

Изобретение относится к электротехнике, к устройствам возвратно-поступательного или ударного действия, применяемым для выполнения различных технологических операций.

Изобретение относится к электротехнике и робототехнике и может быть использовано как трехкоординатный двигатель различных узлов. Технический результат состоит в возможности бесконтактного перемещения упругих стержней под действием электрического тока и возможность точной уставки координат перемещения и положения.

Изобретение относится к области электротехники, в частности к вращающейся электрической машине, оснащенной механизмом регулирования магнитного потока, и предназначено изменять магнитный поток, направленный от постоянного магнита к обмотке статора, без использования специального актуатора.

Изобретение относится к электротехнике. Обмотка электрической машины имеет центральную катушку в центре поля в полюсной паре и вспомогательные катушки в поле каждого из двух полюсов в полюсной паре в статоре.

Изобретение относится к области электротехники, а именно к бесколлекторным электрическим машинам. Технический результат – обеспечение возможности регулирования выходной мощности за счет подключения/отключения отдельных модулей.

Изобретение относится к области электротехники, в частности к системе охлаждения электрической машины. Технический результат - создание электрической машины, имеющей улучшенную вариабельность для системы охлаждения.

Изобретение относится к области электротехники, в частности к электрическим машинам со сверхпроводниками. Технический результат – повышение эффективности работы за счет использования сверхпроводников.

Изобретение относится к области электротехники, в частности к ротору электрической машины. Технический результат – повышение надежности.

Изобретение относится к области электромашиностроения и может быть использовано в магнитоэлектрических генераторах. Техническим результатом является повышение эксплуатационного ресурса обмотки статора, защита от короткого замыкания и соответственно увеличение надежности магнитоэлектрического генератора.

Изобретение относится к электротехнике, к роторам высоко использованных турбогенераторов с газовым охлаждением. Технический результат - повышение интенсификации охлаждения и выравнивание температурного поля обмотки ротора по его длине.

Изобретение относится к электротехнике, в частности к синхронным электрическим двигателям и генераторам, применяемым в трансмиссиях самоходных машин различного назначения.

Изобретение относится к ветроэнергетике. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, полюсные наконечники, источники возбуждения и крепежные элементы, ширина полюсных наконечников в тангенциальном направлении выполнена из условия равенства ширине междуполюсного пространства статорных элементов.
Наверх