Устройство для испытания пиротехнических средств

Изобретение относится к устройству для испытания пиротехнических средств, включающему блок сопловый в виде сдвоенного цилиндрического корпуса с датчиками давления, узлами уплотнения, выпуска газов и воспламенения, при этом последний содержит разрушаемый фиксированным давлением элемент, который открывает узел выпуска газов. Устройство характеризуется тем, что указанный корпус установлен на опорную площадку лафета посредством винтового крепления с использованием хомута, при этом в сопловый блок дополнительно введен элемент трассера, установленный в камере воспламенения со стороны узла уплотнения, а установленные датчики не выступают за пределы нижней части сдвоенного цилиндрического корпуса. Устройство позволяет воспроизводить и визуализировать служебные условия воспламенения пороха при определении баллистических характеристик. 5 з.п. ф-лы, 2 ил.

 

Устройство для испытания пиротехнических средств предназначено для проведения исследований новых типов разрабатываемых пиротехнических средств и натурного моделирования внутрибаллистических процессов, возникающих при выстреле в канале ствола артиллерийского орудия.

Подобные устройства часто называют манометрическими бомбами. Конструкция таких устройств обычно включает толстостенный сосуд, в котором расположены: запальный узел, навеска пороха или иного горючего вещества, узел выпуска газов и один или несколько датчиков давления. Так известно устройство для определения скорости сгорания ракетного топлива, включающее закрытый сосуд, в котором находится держатель образца топлива (пат. US №4430885, G01N33/22, от 14.02.1984). Провод зажигания контактирует с топливом. Кроме того, устройство включает датчик давления и выпускной канал с клапаном. Скорость горения определяется электронной схемой с использованием показаний датчика давления. При этом коэффициент наклона зависимости давления для топлива, имеющего более быстрое горение, будет выше, чем для более медленного горения композиции. Если выбраны два уровня давления Pa и Pb и получена площадь под кривой между двумя точками повышения давления, эти данные можно использовать для сравнения относительных скоростей горения нескольких композиций. Описанное устройство является узкоспециализированным и не включает элемента взрывного горения используемых пиротехнических средств.

Известна также манометрическая бомба, которая состоит из корпуса, выполненного из двух с натягом вставленных один в другой цилиндров, крышки с воспламенительной проставкой, снабженной изолированным электродом и узлом выпуска газа, крышки с проставкой замера давления, обтюрирующих колец, медных экранов, защищающих торцевые поверхности проставок (пат. RU№2236003, G01N33/22, от 27.05.2003). Обтюрирующие кольца в поперечном сечении имеют форму треугольника с его основанием к малому диаметру кольца. В результате достигнуто повышение надежности эксплуатации до давлений 1100 Мпа. Недостатком данной бомбы является сложность изготовления посадки под датчик давления, недостаточная надежность работы этого соединения, разгар канала узла выпуска газов воспламенительной проставки, отсутствие наглядности при наблюдении выстрела. При этом не показана конструкция для крепления самой бомбы. Известна конструкция манометрической бомбы, в которой использован корпус из толстостенного цилиндра (пат. RU№182995, G01N33/22, F42B35/00, F23R7/00, от 11.01.2017; пат. RU№175736, G01N33/22, F42B35/00, F23R7/00, от 03.04.2017). Датчик давления при этом установлен в стенке цилиндра. В первом случае выполняется описание параметров воспламенения в зависимости от плотности заряжания. Последняя меняется посредством использования втулки с мембраной, которая ограничивает внутренний объем манометрической бомбы, а при её разрушении с повышением давления используется весь объём манометрической бомбы. В канале сброса давления использован запорный клапан в виде шарика.

Резкое изменение объёма для горения порохового заряда может исказить измеряемое давление. Во втором техническом решении в канале сброса установлена съёмная втулка, выполненная в виде части ствола и в которую вставлен цилиндр с контрольной поверхностью диаметром, равным калибру ствола. В обоих случаях узел воспламенения или запальная пробка может использоваться длительное время.

В качестве прототипа выбрано устройство для сжигания порохов или для испытания пиротехнических средств или манометрическая бомба, включающая сдвоенный цилиндрический корпус с узлами уплотнения, воспламенения, выпуска газов и датчиками давления в корпусе (пат. RU№58716, G01N33/22, от 11.05.2006). При этом узел воспламенения содержит разрушаемый фиксированным давлением элемент, который открывает узел выпуска газов. Узел уплотнения выполнен с использованием дифференциального уплотнительного устройства, когда уплотнительный элемент сжимается подвижной от давления деталью. Указанную конструкцию функционально ещё можно обозначить коротко как сопловый блок. Датчики давления фиксируют изменения давления в процессе испытания пиротехнических средств в области их чувствительности. При этом расположение датчиков не локализовано в определённой части корпуса, что исключало бы деформационное воздействие в процессе испытаний.

Задачей предлагаемой полезной модели является создание конструкции устройства для испытания пиротехнических средств типа манометрической бомбы, позволяющей сжигать и исследовать указанные средства до давления порядка 1000 МПа без утечки пороховых газов, технологичной в эксплуатации и визуализирующей траекторию вылета газов.

Дополнительной проблемой является воспроизведение служебных условий воспламенения пороха при определении баллистических характеристик.

Технический результат - предлагаемая конструкция, которая обеспечивает фиксацию параметров процесса и его визуализацию, тем самым расширяющая технические возможности устройства для испытания пиротехнических средств.

Решение указанной задачи достигается тем, что в устройстве для испытания пиротехнических средств, содержащим блок сопловый в виде сдвоенного цилиндрического корпуса с датчиками давления, узлами уплотнения, выпуска газов и воспламенения, в котором последний включает разрушаемый фиксированным давлением элемент, открывающий узел выпуска газов, смонтировали указанный блок сопловый устройства на опорную площадку лафета посредством винтового крепления с использованием хомута и стопорной гайки, при этом в сопловый блок дополнительно введен элемент трассера, установленный в камере воспламенения со стороны узла уплотнения, а установленные датчики не выступают за пределы нижней части сдвоенного цилиндрического корпуса.

Больше того, под опорной площадкой в корпусе установлены элементы питания, контроля и дистанционного управления.

Дополнительно датчики давления фиксируют изменения давления в процессе испытания пиротехнических средств в области их чувствительности и передают данные по беспроводному каналу.

Вместе с тем для контроля указанного давления в камере устройства одновременно используют два датчика давления.

К тому же устройство обеспечивает достижение и сброс давления в рабочей камере в заданном диапазоне с требуемым интервалом и для чего комплектуется диафрагмами на каждый интервал давления.

В дополнение в устройстве обеспечивается воспламенение трассера от порохового заряда.

Введение в конструкцию устройства новых блоков и элементов, а также характерное выполнение уже имеющихся основных узлов устройства и особое размещение их элементов позволяет существенно повысить эффективность эксплуатации предлагаемого устройства за счет обеспечения высокой надежности фиксации параметров выстрела и одновременно обеспечить удобство эксплуатации. В конструкции соплового блока используются два дифференциальных уплотнительных устройства с использованием резиновых колец (Г.В.Макаров Уплотнительные устройства, Ленинград, Машиностроение, Ленинградское отделение, 1973г, стр.23-31). Одно уплотнение с разрушаемой при выстреле диафрагмой обеспечивает свободное истечения поровых газов и для визуализации горения трассера, а другое дифференциальное уплотнение имеет гнездо для установки трассера.

Система контроля обеспечивает возможность контроля работоспособности и времени работы трассера. Управление процессом производится автоматически, дистанционно, вручную или от пульта. А возможности моделирования условий выстрела внутри канала ствола определяется величиной порохового заряда и конструкцией диафрагмы.

Заявляемое изобретение пояснено чертежами, на которых:

- на фиг.1а показан общий вид предлагаемого устройства;

- на фиг.1б показан вид крепления соплового блока устройства;

- на фиг.2 показан разрез блока соплового.

Устройство содержит (фиг. 1а и б) блок сопловый 1 и трехстанинный лафет 2. Сошники 3 в количестве трех штук фиксируются в станинах и служат для закрепления лафета при установке на грунт. Станины лафета в центре соединены стойкой с опорной площадкой, на которой расположен хомут 4. Крепление блока соплового к лафету производится его установкой в этот хомут 4 и его стопорением гайкой 5 и шпонкой 6 (фиг.1а). Стопорная гайка в свою очередь стопорится с помощью гребенки 7. Крепление шпонки и гребенки к блоку сопловому производится посредством болтов 8 и 9 соответственно, стопорение которых производится проволокой 10. Стойка лафета, на которую устанавливается блок сопловый, снизу имеет закрытую полость для расположения в ней вспомогательных элементов питания, контроля и управления процессом испытаний.

Блок сопловой (фиг. 2) состоит из корпуса блока 11, в который со стороны бурта трубы вставляется грибовидный стержень 13 с ввинченной в него гайкой трассера 25 (выбирается в зависимости от испытуемого трассера) и установленным резиновым уплотнительным кольцом 14, металлическими уплотнительными кольцами 15 и 16 соответственно, втулкой 12. После установки стержня, в корпус блока ввинчивается гайка 18, затем гайка 17. Далее через медные уплотнительные кольца 24 устанавливаются втулки для датчиков давления 21 и 23 соответственно, затем ввинчиваются гайки 22.

Со стороны резьбовой части корпуса производится установка грибовидного стержня 26 в сборе с кольцом 27, диафрагмой 20 (выбирается в зависимости от необходимого рабочего давления), гайкой 27 и гайкой 19. Элементы 26, 27, 28, часть 20, провод 30 с воспламенителем 29 составляют узел воспламенения и выпуска газов.

Предлагаемое устройство работает следующим образом. Узлы уплотнения используются для датчиков давления и элементов, закрывающих с двух сторон цилиндрический корпус соплового блока.

Вначале следующим образом выполняется монтаж устройства:

Необходимо установить лафет 2 (рис. 1а) на ровную грунтовую площадку, в опоры установить сошники 3, с помощью соответствующего инструмента вбить сошники в грунт, после застопорить сошники в опорах лафета; далее следует установить сопловой блок 1 в хомут 4 на стойке лафета и закрепить посредством гайки стопорной 5 и шпонки 6; после чего нужно застопорить гайку стопорную 5 гребенкой 7, для чего закрепить гребенку к корпусу лафета посредством болтов 8; закрепить шпонку 6 к сопловому блоку 1 посредством болтов 8; застопорить проволокой 10 болты 8 и 9. После указанного монтажа установка готова к проведению испытаний.

При проведении испытаний на установке производится демонтаж гайки 18 и грибовидного стержня 13 в сборе с дифференциальным уплотнением, состоящим из резинового уплотнительного кольца 14, металлических уплотнительных колец 15 и 16, втулкой 12. Затем производится демонтаж гайки 19 и грибовидного стержня 26 в сборе с кольцом 27, диафрагмой 20, гайкой 28. После производится установка трассера в гайку трассера 25 и монтаж гайки трассера в грибовидный стержень 13. Затем производится заряжание установки. Для этого в камору установки закладывается пороховой заряд, величина которого выбирается в зависимости от требуемого давления. Затем устанавливается электровоспламенитель 29, провод 30, от которого проводится через отверстие в грибовидном стержне 26 в сборе с кольцом 27, выбранной в зависимости от требуемого давления диафрагмой 20, гайкой 28, которая устанавливается в корпус блока и последующей поджатием части диафрагмы 20 гайкой 19. После производится установка грибовидного стержня 13 в сборе с дифференциальным уплотнением и трассером 25 в корпус блока и поджатием гайкой 18, в соответствии с рис. 2. Производится затяжка гаек 17 и 18 с заданным моментом.

При подаче напряжения на электровоспламенитель 29 происходит воспламенение порохового заряда. Горение порохового заряда вызывает повышение давления в каморе установки. При достижении требуемого давления происходит срезание бурта диафрагмы и вместе с пороховыми газами вылетает срезаемая часть диафрагмы из установки вместе с грибовидным стержнем 26, кольцом 27 и гайкой 28. Пороховые газы, истекая через отверстие в диафрагме, моделируют процесс изменения давления в канале ствола артиллерийского орудия. В процессе горения порохового заряда происходит воспламенение испытуемого трассера. Измерение давления пороховых газов в процессе горения пороха производится датчиками давления 31 и 32 и регистрируется аппаратурой. Датчиков давления может быть и менее двух. Наличие, по меньшей мере, двух аттестованных датчиков позволяет провести усреднение значений по давлению. Тем самым можно повысить надежность измерений. Передача показаний датчиков может выполняться по беспроводному каналу. Изменение параметров, происходящих при горении пороха в каморе установки, производится за счет изменения массы порохового заряда, марки пороха, размеров диафрагмы.

Устройство рассчитано на давление до 1000 МПа (10000 кгс/см²) давления.

Предлагаемое изделие обеспечивает достижение и сброс давления в рабочей камере в диапазоне от 400 МПа (4000 кгс/см²) до 800 МПа (8000 кгс/см²) с интервалом 100 МПа (1000 кгс/см²), и комплектуется диафрагмами на каждый интервал давления.

На описанное устройство разработана конструкторская документация. Опытный экземпляр изготовлен и испытан. Испытания подтвердили соответствие заложенным в задании к устройству требованиям.

1. Устройство для испытания пиротехнических средств, включающее блок сопловый в виде сдвоенного цилиндрического корпуса с датчиками давления, узлами уплотнения, выпуска газов и воспламенения, при этом последний содержит разрушаемый фиксированным давлением элемент, который открывает узел выпуска газов, отличающееся тем, что указанный корпус установлен на опорную площадку лафета посредством винтового крепления с использованием хомута, при этом в сопловый блок дополнительно введен элемент трассера, установленный в камере воспламенения со стороны узла уплотнения, а установленные датчики не выступают за пределы нижней части сдвоенного цилиндрического корпуса.

2. Устройство по п. 1, отличающееся тем, что в корпусе опорной площадки установлены элементы питания, контроля и дистанционного управления.

3. Устройство по п. 1, отличающееся тем, что датчики давления фиксируют изменения давления в процессе испытания пиротехнических средств в области их чувствительности и передают данные по беспроводному каналу.

4. Устройство по п. 1, отличающееся тем, что для контроля указанного давления в камере устройства одновременно используют два датчика давления.

5. Устройство по п. 1, отличающееся тем, что устройство обеспечивает достижение и сброс давления в рабочей камере в заданном диапазоне с требуемым интервалом и комплектуется диафрагмами на каждый интервал давления.

6. Устройство по п. 1, отличающееся тем, что в устройстве обеспечивается воспламенение трассера от порохового заряда.



 

Похожие патенты:

Изобретение относится к способу определения парафина в нефтесодержащих отложениях, включающий осаждение асфальтенов растворителем, отстаивание реакционной смеси в темном месте и ее последующую фильтрацию, удаление растворителя из полученного фильтрата и адсорбцию смолистых веществ оксидом алюминия Al2O3, согласно которому из обессмоленной фракции удаляют растворитель, остаток растворяют в нагретой смеси толуола и ацетона, охлаждают, выдерживают при минусовой температуре, обеспечивающей кристаллизацию парафинов, отфильтровывают на холодном фильтре кристаллизовавшийся осадок парафинов и промывают смесью толуола и ацетона, сохраняя температуру кристаллизации, после чего смывают осадок горячим толуолом, упаривают, сушат до постоянного веса и взвешивают.

Изобретение относится к передвижным химико-аналитическим лабораториям, в частности для испытаний порохов. Мобильный комплекс контейнерного типа для проведения лабораторных испытаний порохов размещается в трех контейнерах.

Изобретение относится к области исследования или анализа энергетических материалов (ЭМ) путем определения их физических свойств, а именно, к устройствам для определения характеристик чувствительности ЭМ к трению ударного характера.

Изобретение относится к обеспечению взрывобезопасности аппаратов на стадии разработки новых марок нитратцеллюлозных порохов. Способ определения взрывобезопасной высоты слоя нитратцеллюлозных порохов для аппаратов цилиндрической и прямоугольной формы включает проведение испытаний на манометрической установке в сосуде высокого давления постоянного объема величиной 37 см3, определение путем математической обработки полученной зависимости давление-время параметров их горения, оказывающих наибольшее влияние на безопасную и критическую высоты слоев пороха, с последующим получением зависимости взрывобезопасной и критической высоты слоя пороха в количестве 150-200 г от параметров горения при использовании полузамкнутых емкостей цилиндрической формы диаметрами 100 и 300 мм или прямоугольной формы с наименьшей стороной размером 100 и 300 мм без проведения крупномасштабных натурных испытаний.

Предложен способ и измерительное устройство для определения параметров качества газа, в котором газ или газовая смесь протекает как через ультразвуковой расходомер (4), так и через микротермический датчик (7), и первый используют для определения скорости звука и течения, а с помощью второго определяют теплопроводность и теплоемкость газа или газовой смеси.

Предложен способ и измерительное устройство для определения параметров качества газа, в котором газ или газовая смесь протекает как через ультразвуковой расходомер (4), так и через микротермический датчик (7), и первый используют для определения скорости звука и течения, а с помощью второго определяют теплопроводность и теплоемкость газа или газовой смеси.

Изобретение относится к исследованию низкотемпературных свойств нефтепродуктов путем пропускания через них ультразвуковых волн и может быть использовано для экспрессного контроля температуры застывания и текучести в аналитических лабораториях нефтехимических предприятий, университетов и научно-исследовательских центров.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения энергетических характеристик боеприпасов и зарядов ВВ. Способ включает размещение объекта испытаний на испытательной площадке, на заданном расстоянии от регистрирующего устройства, положение и размер которого определяют при осуществлении предварительного снимка.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств топлив для реактивных двигателей. Способ включает отбор пробы, добавление 0,125 г дикумила пероксида, размещение пробы в измерительной бомбе при соотношении газовой и жидкой фаз 2:1, наддув кислорода в измерительной бомбе до 400 кПа, выдерживание измерительной бомбы в нагретом до 100°С термостате в течение 48 ч.

Изобретение относится к области контроля качества топлив и может быть использовано для определения температуры помутнения дизельных топлив. Способ заключается в том, что анализируемый образец вводят в измерительную ячейку, размещают ее в криостатированную камеру, в которой образец предварительно нагревают, а затем подвергают не менее пяти циклам «охлаждение-нагрев», поддерживая в каждом цикле разную скорость изменения температуры и записывая для каждого цикла «охлаждение-нагрев» кривую зависимости, показывающую изменение удельного теплового потока, поступающего из образца при его охлаждении и получаемого образцом при его нагревании, как функцию температуры, на каждой из которых фиксируют температуру начала кристаллизации (ТнкVi) анализируемого образца, температуру застывания (ТзVi) и температуру окончания плавления твердой фазы (ТопVi).
Наверх