Распределители катализатора и транспортного газа для систем циркуляции реактор-регенератор с кипящим слоем

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С35 в соответствующие олефиновые углеводороды. Изобретение касается распределителя катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых углеводородов С35 с секционированным решетками кипящим слоем, содержащего подводящую транспортную трубу 19, соединенную с расположенной по оси реактора и/или регенератора вертикальной транспортной трубой 1 с восходящим или нисходящим потоком катализатора и транспортного газа, установленную открытым торцом 2 соответственно вверх или вниз, расположенный соосно с ней расширитель, содержащий дно, соединенное с торцом 2 транспортной трубы 1, и крышку. Дно расширителя состоит из диффузора 6 в виде усеченного конуса, соединенного меньшим основанием с открытым торцом 2 транспортной трубой 1 и большим основанием 7 с первым диском 8, окружающим отверстие диффузора 6, а крышка включает днище и второй диск 12, при этом второй диск 12 соединен с торцом днища, окружая его, установлен на некотором расстоянии вверх или вниз от первого диска 8 жестко с образованием между дисками открытого кольцеобразного пространства 20, угол раскрытия диффузора 6 составляет 10-60°. Технический результат - уменьшение эрозии элементов конструкции распределителя и внутренних устройств реактора и регенератора, увеличение выходов олефиновых углеводородов, снижение расхода воздуха на регенерацию катализатора, снижение уноса катализатора. 24 з.п. ф-лы, 7 ил.

 

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С35 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.

Из уровня техники известны устройства для распределения катализатора, циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С35 с кипящим слоем, секционированного решетками (И.Л. Кирпичников, В.В. Береснев, Л.М. Попов, «Альбом технологических схем основных производств промышленности синтетического каучука», Химия, Ленинград, 1986, стр. 8-12; патент RU 2601002, МПК B01J 8/04; С07С 5/333, опубл. 27.10.2016). Указанные устройства размещаются в верхней части реактора и/или регенератора в сепарационной зоне над уровнем кипящего слоя и включают в себя отражательный диск конической или эллиптической формы, расположенный над верхним торцем транспортной трубы с восходящим потоком смеси катализатора и транспортного газа. К недостаткам известного распределителя катализатора следует отнести возможность захвата частиц катализатора газовым потоком реактора и/или регенератора на выходе из распределителя, что приводит к увеличению уноса (потерь) катализатора из системы реактор-регенератор. Кроме того, транспортный газ в вариантах подачи на транспорт катализатора в реактор паров сырья и воздуха -в регенератор не контактирует с кипящим слоем соответственно в реакторе и регенераторе, примешиваясь к контактному газу и газу регенерации в сепарационных зонах указанных аппаратов. Величина указанных потоков достигает 5% и более от количества подаваемого в реактор сырья или воздуха в регенератор. Непрореагировавшие парафиновые углеводороды из транспортного газа балластируют контактный газ, проходят далее весь технологический цикл и возвращаются с рециклом непрореагировавших парафиновых углеводородов сырья на вход в реактор, что приводит к соответствующим энергетическим затратам и потерям части указанных парафиновых углеводородов транспортного газа в производстве. В то же время кислород воздуха, подаваемого на транспорт катализатора в регенератор, не используется для регенерации катализатора, например, для выжига кокса в регенераторе. К недостатку указанного распределителя относится также наличие значительных тепловых неравномерностей в верхней части кипящего слоя реактора и регенератора вследствие неравномерного распределения катализатора по сечению кипящего слоя, что снижает выходы олефиновых углеводородов.

Расположение распределителя катализатора и транспортного газа в виде отражательного диска конической формы под уровнем кипящего слоя (Патент RU 2591159, МПК С07С 5/333; B01J 8/00, опубл. 10.07.2016) не приводит к улучшению ситуации описанной выше, в связи с тем, что катализатор и транспортный газ подается в кипящий слой практически в одну точку - в центральную часть кипящего слоя реактора и регенератора.

Известны распределители катализатора и транспортного газа (Патент RU 2129111, МПК С07С 5/333, опубл. 20.04.1999; патент RU 2301107, МПК B01J 8/04; С07С 5/333, опубл. 20.06.2007) для системы реактор-регенератор дегидрирования парафиновых углеводородов С35 с кипящим слоем с секционирующими решетками. В патенте RU 2301107 реактор и/или регенератор, содержит расположенную по их оси реактора и/или регенератора вертикальную транспортную трубу с восходящим потоком смеси катализатора и транспортного газа, соединенную с установленным соосно с трубой на ее верхнем торце расширителем, содержащим цилиндрическую обечайку, дно и крышку. При этом расширитель оборудован соединительными трубами с вертикальными стояками с нисходящим потоком смеси катализатора и транспортного газа, нижние торцы которых расположены под уровнем кипящего слоя катализатора над верхней секционирующей решеткой. Однако, подача катализатора и транспортного газа компактными струями в несколько локальных точек кипящего слоя неэффективна вследствие ограниченного перемешивания и контактирования распределяемых потоков с кипящим слоем, что определяет большие тепловые неравномерности в кипящем слое, невысокие выходы олефиновых углеводородов и повышенный унос катализатора при локальном возмущении кипящего слоя распределяемыми потоками катализатора и транспортного газа. При этом наблюдается эрозия верхних секционирующих решеток реактора и/или регенератора вследствие воздействия на них компактных струй смеси катализатора и транспортного газа, выходящих из спускных стояков.

Наиболее близким по совокупности признаков к предлагаемому является распределитель отработавшего катализатора и транспортного газа в регенераторе установки каталитического крекинга с кипящим слоем (Патент RU 2278144, МПК C10G 11/12, опубл. 20.06.2006). Распределитель содержит расположенную по оси регенератора вертикальную транспортную трубу с восходящим потоком катализатора и транспортного газа, установленную открытым торцем вверх, расположенный соосно с ней расширитель, содержащий дно, соединенное с торцем транспортной трубы и выполненное в виде первого диска, окружающего отверстие торца трубы, и крышку в виде второго диска с расположением последнего на некотором расстоянии вверх от первого диска с образованием между дисками кольцевой щели, открытой для истечения катализатора и транспортного газа.

К недостаткам известного распределителя относится:

- эрозия крышки расширителя (второго диска) при ударном воздействии на ее поверхность потока катализатора и транспортного газа при скорости близкой к скорости в транспортной трубе;

- эрозия первого диска при резком расширении потока катализатора и транспортного газа на входе в расширитель с образованием примыкающей к первому диску кольцеобразной зоны с обратной циркуляцией потока, сопровождаемой сильнопульсирующими отрывными течениями (Е.И. Идельчик, «Аэрогидродинамика технологических аппаратов», Москва, Машиностроение, 1983, стр. 28);

- неравномерное распределение как катализатора, так и транспортного газа в поперечном сечении кипящего слоя, связанное с наличием характерных для двухфазных систем крупномасштабных неоднородностей потоков катализатора (преимущественно в виде агрегатов частиц) и транспортного газа в поперечном сечении транспортной трубы на входе в расширитель (И.М. Разумов, «Псевдоожижение и пневмотранспорт сыпучих материалов», Москва, Издательство, «Химия», 1972, стр. 220-228), что особенно проявляется при изменениях геометрических параметров транспортной трубы на участке, предшествующем установке распределителя, например, при наличии на транспортной трубе поворотных колен, когда катализатор при прохождении через колено под влиянием центробежных сил оттесняется к одной стенке трубы, тогда как газ проходит вдоль противоположной стенки, создавая ситуацию разделения потоков катализатора и транспортного газа, при которой катализатор движется главным образом по одной стороне периметра распределителя, а транспортный газ по - другой;

- недостаточная эффективность тепло-массообмена в зоне ввода потоков катализатора и транспортного газа в кипящий слой;

- повышенный унос катализатора из кипящего слоя.

Задачей предлагаемого изобретения является сокращение эрозии элементов распределителя, увеличение выходов олефиновых углеводородов на пропущенное и разложенное сырье, снижение расхода воздуха на регенерацию катализатора, снижение уноса катализатора.

Для решения поставленной задачи предлагается распределитель катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых углеводородов С35 с секционированным решетками кипящим слоем, содержащий подводящую транспортную трубу 19, соединенную с расположенной по оси реактора и/или регенератора вертикальной транспортной трубой 1 с восходящим или нисходящим потоком катализатора и транспортного газа, установленную открытым торцем 2 соответственно вверх или вниз, расположенный соосно с ней расширитель, содержащий дно, соединенное с торцем 2 транспортной трубы 1, и крышку, в котором дно расширителя состоит из диффузора 6 в виде усеченного конуса, соединенного меньшим основанием с открытым торцем 2 транспортной трубой 1, и большим основанием 7 с первым диском 8, окружающим отверстие диффузора 6, а крышка включает днище и второй диск 12, при этом второй диск 12 соединен с торцом днища, окружая его, установлен на некотором расстоянии вверх или вниз от первого диска 8 жестко с образованием между дисками открытого кольцеобразного пространства 20, угол раскрытия диффузора 6 составляет 10°-60°.

Крышка может содержать эллиптическое 10, или сферическое 11, или коническое 16 днище.

Крышка расширителя может дополнительно включать цилиндрическую обечайку 13, соединенную с установленным на ее верхнем 14 или нижнем 15 торце

эллиптическим 10, сферическим 11 или коническим 16 днищем и, соответственно, на ее нижнем 15 или верхнем 14 торце, соединенную со вторым диском 12, окружающим отверстие обечайки 13.

Диаметр торца днища или нижнего отверстия обечайки 13 может быть больше диаметра большего отверстия диффузора 6, при этом кромки торца днища или отверстия обечайки 13 могут лежать на образующей конуса диффузора 6.

К днищу крышки может быть прикреплен своим основанием отражательный конус 17, который может быть направлен вершиной вниз или вверх и установлен по центру над или под открытым торцем 2 транспортной трубы 1.

Отношение диаметра основания отражательного конуса 17 к диаметру большего основания 7 диффузора 6 может находиться в диапазоне от 0,30 до 1,20.

Первый диск 8 может быть установлен горизонтально.

Первый диск 8 может иметь форму усеченного конуса и быть установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 30° вниз.

Второй диск 12 может быть установлен горизонтально.

Второй диск 12 может иметь форму усеченного конуса и быть установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 45° вниз.

Второй диск 12, является одновременно днищем и имеет форму конуса или усеченного конуса.

Второй диск 12 может быть установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 45° вниз.

Отношение диаметра первого диска 8 к диаметру реактора или регенератора может находиться в диапазоне значений от 0,10 до 0,50.

Отношение диаметра первого диска 8 к диаметру второго диска 12 может находиться в диапазоне значений от 0,80 до 1,25.

Второй диск 12 может быть жестко соединен с первым диском 8 с помощью перегородок 21.

Число перегородок 21 может находиться в диапазоне от 3,00 до 8,00.

Перегородки 21 могут быть равномерно распределены по окружности дисков, разделяя открытое кольцевое пространство 20 на секции.

Перегородки 21 могут представлять собой плоские радиально направленные пластины.

Пластины могут быть установлены под углом к радиальному направлению в диапазоне значений от 3° до 45°.

Пластины могут быть изогнуты в форме спирали.

Расширитель может быть расположен над или под уровнем кипящего слоя над верхней секционирующей решеткой.

Подводящая транспортная труба 19 может быть вынесена из кипящего слоя реактора и/или регенератора полностью или частично и располагаться снаружи указанных аппаратов по конструктивным соображениям или в связи с технологическими ограничениями.

Так, например, подводящую транспортную трубу 19 с перегретым в регенераторе катализатором, направленным в реактор, целесообразно вынести из стакана десорбции циркулирующего катализатора в нижней части реактора или из стакана десорбции и кипящего слоя зоны дегидрирования реактора во избежание образования кокса на «горячей» поверхности подводящей транспортной трубы 19. При этом подводящая транспортная труба 19 соединяется с транспортной трубой 1 распределителя посредством использования соединительной транспортной трубы 5 и поворотных колен 3 и 4.

На фигурах 1-4 представлены некоторые возможные варианты распределителей катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых углеводородов С35 с секционированным решетками кипящим слоем в соответствии с настоящим изобретением.

По одному варианту распределитель содержит расположенную по оси реактора и/или регенератора вертикальную транспортную трубу 1 с восходящим (фиг. 1 и 2) потоком 9 катализатора и транспортного газа, установленную открытым торцем 2 вверх.

По другому варианту распределитель содержит расположенную по оси реактора и/или регенератора вертикальную транспортную трубу 1 с нисходящим (фиг. 3 и 4) потоком 18 катализатора и транспортного газа, установленную открытым торцем 2 вниз и с помощью поворотных колен 3 и 4 торцем 2 - вниз. Нисходящий поток организован, например, в связи с возможным расположением подводящей транспортной трубы 19 не по оси реактора или регенератора (фиг. 3) или расположением подводящей транспортной трубы 19 вне реактора или регенератора (фиг. 4).

Распределители также содержат расположенный соосно с вертикальной транспортной трубой 1 расширитель, содержащий крышку и дно, состоящее из диффузора 6 в виде усеченного конуса, соединенного меньшим основанием с торцем 2 (фиг. 1 и 2) и торцем 2 (фиг. 3 и 4) транспортной трубы 1, и большим основанием 7 с первым диском 8, окружающим отверстие диффузора 6. Крышка расширителя состоит из эллиптического 10 (фиг. 3) или сферического 11 (фиг. 1) или конического 16 (фиг. 2) днища и второго диска 12 (фиг. 3), установленного на торце днища, окружая его, при этом второй диск 12 установлен на некотором расстоянии вверх (фиг. 1 и 2) или вниз (фиг. 3 и 4) от первого диска 8 с образованием между дисками открытого кольцеобразного пространства 20.

Крышка (фиг. 1) состоит из цилиндрической обечайки 13, соединенной с установленным на ее верхнем торце 14 сферическим днищем 11 и, соответственно, на ее нижнем торце 15 вторым диском 12, окружающим отверстие обечайки 13.

Диаметр торца эллиптического днища 10 (фиг. 3) или нижнего отверстия обечайки 13 (фиг. 1) больше диаметра большего отверстия диффузора 6, при этом кромки торца эллиптического днища 10 или отверстия обечайки 13 лежат на образующей конуса диффузора 6.

К днищу прикреплен своим основанием отражательный конус 17, причем отражательный конус может быть направлен вниз (фиг. 2) или вверх (фиг. 4) и установлен по центру над или под открытым торцем 2 транспортной трубы 1.

Отношение диаметра основания отражательного конуса 17 к диаметру транспортной трубы 1 может находиться в диапазоне от 0,30 до 1,50.

Первый диск 8 (фиг 1, 2) установлен горизонтально.

Первый диск 8 (фиг 3, 4) имеет форму усеченного конуса.

Второй диск 12 (фиг. 3) установлен горизонтально.

Второй диск 12 имеет форму усеченного конуса (фиг. 1).

Второй диск 12 является одновременно днищем и имеет форму конуса (фиг. 2) или усеченного конуса (фиг. 4).

Второй диск 12 жестко соединен с первым диском 8 с помощью перегородок 21 (фиг .5-7). Перегородки 21 равномерно распределены по окружности дисков, разделяя открытое кольцевое пространство 20 на секции.

Перегородки 21 представляют собой плоские радиально направленные пластины (фиг. 5).

Перегородки 21 установлены под углом к радиальному направлению (фиг. 6).

Перегородки 21 изогнуты в форме спирали (фиг. 7). Для спиралевидных перегородок могут использоваться различные виды спиралей, такие как архимедовы, гиперболические, логарифмические и др. Предпочтительной является развертка (эвольвента) окружности большего основания 7 конуса диффузора 6.

Расширитель расположен над (фиг. 3) или под (фиг. 4) уровнем кипящего слоя над верхней секционирующей решеткой.

Предлагаемый распределитель работает следующим образом.

При осуществлении процессов дегидрирования парафиновых углеводородов С35 в кипящем слое для циркуляции катализатора из реактора в регенератор и обратно используется система пневмотранспорта катализатора с предпочтительной линейной скоростью газового потока в установленных вертикально транспортных трубах в диапазоне от 4 м/сек до 12 м/сек. При этом в качестве транспортного газа могут использоваться пары сырья (при транспорте катализатора в реактор) и воздух (при транспорте катализатора в регенератор).

Смесь циркулирующего катализатора и транспортного газа поступает в реактор или регенератор в режиме восходящего потока (фиг. 1, 2) или нисходящего потока (фиг. 3, 4) по транспортной трубе 1. Далее смесь катализатора и транспортного газа проходит через диффузор 6, с углом раскрытия диффузора а равном 10°-60°. При величине указанного угла менее 60° реализуется режим, приближающийся к безотрывному течению потока газа вдоль диффузора 6, и практически исключающий явления обратной циркуляции газа и катализатора с сильнопульсирующими отрывными течениями в зоне, примыкающей к первому диску 8, исключая эрозию последнего. Снижение угла раскрытия диффузора 6 до величин менее 10° становится неприемлемым в связи с конструктивными ограничениями по длине диффузора 6. При движении вдоль диффузора 6 снижается скорость транспортного газа и катализатора, снижаются концентрационные неравномерности в потоке, снижается гидравлическое сопротивление на участке входа в открытое кольцеобразное пространство 20. При этом поток газа, выйдя из диффузора 6, равномерно отводится в открытое кольцеобразное пространство 20, а поток катализатора по инерции достигает поверхности днищ 11 и 10 (фиг. 1 и 3) или конического днища 16 с отражательным конусом 17 (фиг. 2 и 4) при существенно меньших скоростях, чем в прототипе. При этом, в объеме указанных днищ 10, 11 или 16 в центральной их части, накапливается подвешенный слой постоянно обменивающегося катализатора, что в совокупности со снижением скоростей потоков резко снижает эрозию поверхностей указанных элементов конструкции. Катализатор поступает в объем днищ преимущественно в центральную их часть, задерживается в подвешенном слое, где усредняются неравномерности потока катализатора, и вытекает через периферийную часть днищ. При соблюдении заявляемого в изобретении условия -«диаметр торца днища 10 (фиг. 3) или нижнего отверстия обечайки 13 (фиг. 1) больше диаметра большего отверстия диффузора 6, а кромки торца днища 10 и отверстия обечайки 13 лежат на образующей конуса диффузора 6» - создается компактный, концентрированный и равномерно распределенный по периметру кольцеобразного пространства 20 поток катализатора в виде рукава, обеспечивая равномерное питание потока транспортного газа катализатором на начальном участке кольцеобразного пространства 20. Далее поток транспортного газа и равномерно распределенного в нем катализатора проходит открытое кольцеобразное пространство 20 и выходит в кипящий слой более равномерно, чем в прототипе, по всей наружной кромке дисков распределителя в виде непрерывной, веерообразной, радиально-направленной струи. Происходит сначала задержка катализатора на начальном участке кольцеобразного пространства 20 и далее, под воздействием потока транспортного газа, значительное увеличение скорости потока катализатора на конечном участке указанного пространства. Эта ситуация обеспечивается заявляемым диапазоном размеров конструктивных элементов распределителя. Увеличение скорости истечения смеси катализатора и транспортного газа позволяет выпускать катализатор и газ из кольцеобразной щели распределителя на существенное расстояние от наружной кромки дисков. Одновременно, под воздействием потока катализатора, транспортный газ диспергируется в распределителе и в точке ввода в кипящий слой находится в состоянии мелких пузырьков. Высокая скорость истечения катализатора и транспортного газа в радиальном направлении улучшает перемешивание катализатора и транспортного газа в кипящем слое. Достигаемое при использовании изобретения более равномерное распределение катализатора в потоке транспортного газа на начальном участке кольцеобразного пространства 20 и, как следствие, более равномерное распределение катализатора по окружности дисков распределителя на выходе из щели обеспечивает более высокий уровень изотермичности кипящего слоя в зоне ввода катализатора по сравнению с прототипом. В то же время совместный эффект диспергирования транспортного газа и перемешивания катализатора и газа создает условия резкого увеличения интенсивности процессов тепло-массообмена в кольцеобразной щели и в верхней части кипящего слоя в зоне ввода катализатора и транспортного газа в кипящий слой. Это приводит к улучшению степени использования транспортного газа в процессах дегидрирования и регенерации катализатора по сравнению с прототипом. Так, при использовании предлагаемой конструкции распределителя в реакторе с подачей паров сырья на транспорт катализатора, обеспечиваются условия для селективной конверсии подаваемых на транспорт парафиновых углеводородов, что приводит к получению дополнительного количества (увеличению выхода) получаемых в процессе олефиновых углеводородов. В то же время, при использовании предлагаемой конструкции распределителя в регенераторе с подачей воздуха на транспорт катализатора увеличивается концентрация кислорода в верхней части кипящего слоя регенератора, что способствует повышению эффективности процессов регенерации катализатора (окисления катализатора, выжига кокса и др.). При этом открывается возможность уменьшения подачи воздуха в регенератор при существенном увеличении степени регенерации катализатора подаваемого затем в реактор, что также приводит к увеличению выходов олефиновых углеводородов. Хотя на фиг. 1-2 первые диски показаны установленными горизонтально, они могут быть установлены также в виде конусов при предпочтительном наклоне образующей конусов вниз (фиг. 3, 4). Коническая форма дисков (фиг. 1-4) с наклоном образующей конусов вниз препятствует скоплению катализатора на поверхностях указанных дисков и, соответственно, при использовании распределителя в реакторе, препятствует отложению монолитного кокса на этих элементах конструкции, что повышает стабильность работы распределителя и реактора в целом.

При секционировании открытого кольцеобразного пространства перегородками, указанное пространство делится на независимые каналы, что обеспечивает сохранение равномерности распределения потоков при их истечении вдоль каналов. Расположение плоских перегородок 21 под углом β к радиальному направлению (фиг. 6), а также использование спиралевидных перегородок (фиг. 7), приводит к созданию закрученного потока транспортного газа и катализатора в кипящем слое катализатора и, как следствие, к дополнительному увеличению тепломассообмена в кипящем слое. Кроме того, в этих случаях, при изменении направления потока транспортного газа и катализатора, последний под воздействием центробежных сил концентрируется у стенок перегородок и вводится в кипящий слой в виде компактных струй, что обеспечивает увеличение глубины проникновения струй катализатора в кипящий слой. Закрученный поток транспортного газа и катализатора в совокупности с достигаемым равномерным распределением его в поперечном сечении верхней части кипящего слоя снижает унос катализатора из системы реактор-регенератор. При использовании предлагаемого распределителя, например, в варианте нисходящего потока в транспортных трубах, секционирующие решетки реактора и регенератора также не подвергаются эрозионному износу вследствие исключения вертикально направленных струй катализатора.

Таким образом, техническим результатом является то, что предлагаемая конструкция распределителя транспортного газа и катализатора циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С35 с кипящим слоем обеспечивает по сравнению с известной конструкцией уменьшение эрозии элементов конструкции распределителя и внутренних устройств реактора и регенератора, увеличение выходов олефиновых углеводородов, снижение расхода воздуха на регенерацию катализатора, снижение уноса катализатора.

1. Распределитель катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых углеводородов С35 с секционированным решетками кипящим слоем, содержащий подводящую транспортную трубу (19), соединенную с расположенной по оси реактора и/или регенератора вертикальной транспортной трубой (1) с восходящим или нисходящим потоком катализатора и транспортного газа, установленную открытым торцом (2) соответственно вверх или вниз, расположенный соосно с ней расширитель, содержащий дно, соединенное с торцом (2) транспортной трубы (1), и крышку, отличающийся тем, что дно расширителя состоит из диффузора (6) в виде усеченного конуса, соединенного меньшим основанием с открытым торцом (2) транспортной трубой (1) и большим основанием (7) с первым диском (8), окружающим отверстие диффузора (6), а крышка включает днище и второй диск (12), при этом второй диск (12) соединен с торцом днища, окружая его, установлен на некотором расстоянии вверх или вниз от первого диска (8) жестко с образованием между дисками открытого кольцеобразного пространства (20), угол раскрытия диффузора (6) составляет 10-60°.

2. Распределитель по п. 1, отличающийся тем, что крышка содержит эллиптическое (10), или сферическое (11), или коническое (16) днище.

3. Распределитель по п. 2, отличающийся тем, что крышка расширителя дополнительно включает цилиндрическую обечайку (13), соединенную с установленным на ее верхнем (14) или нижнем (15) торце эллиптическим (10), сферическим (11) или коническим (16) днищем и, соответственно, на ее нижнем (15) или верхнем (14) торце, соединенную со вторым диском (12), окружающим отверстие обечайки (13).

4. Распределитель по п. 3, отличающийся тем, что диаметр торца днища или нижнего отверстия обечайки (13) больше диаметра большего отверстия диффузора (6).

5. Распределитель по п. 3, отличающийся тем, что кромки торца днища или отверстия обечайки (13) лежат на образующей конуса диффузора (6).

6. Распределитель по п. 1, отличающийся тем, что к днищу крышки прикреплен своим основанием отражательный конус (17), который направлен вершиной вниз или вверх и установлен по центру над или под открытым торцом (2) транспортной трубы (1).

7. Распределитель по п. 6, отличающийся тем, что отношение диаметра основания отражательного конуса (17) к диаметру большего основания (7) диффузора (6) находится в диапазоне от 0,30 до 1,20.

8. Распределитель по п. 1, отличающийся тем, что первый диск (8) установлен горизонтально.

9. Распределитель по п. 1, отличающийся тем, что первый диск (8) имеет форму усеченного конуса и установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 30° вниз.

10. Распределитель по п. 1, отличающийся тем, что второй диск (12) установлен горизонтально.

11. Распределитель по п. 10, отличающийся тем, что второй диск (12) имеет форму усеченного конуса и установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 45° вниз.

12. Распределитель по п. 1, отличающийся тем, что второй диск (12), является одновременно днищем и имеет форму конуса или усеченного конуса.

13. Распределитель по п. 12, отличающийся тем, что второй диск (12) установлен с наклоном образующей конуса под углом в диапазоне от 30° вверх от горизонтального положения и до 45° вниз.

14. Распределитель по п. 1, отличающийся тем, что отношение диаметра первого диска (8) к диаметру реактора или регенератора находится в диапазоне значений от 0,10 до 0,50.

15. Распределитель по п. 10, отличающийся тем, что отношение диаметра первого диска (8) к диаметру второго диска (12) находится в диапазоне значений от 0,80 до 1,25.

16. Распределитель по п. 1, отличающийся тем, что второй диск (12) жестко соединен с первым диском (8) с помощью перегородок (21).

17. Распределитель по п. 16, отличающийся тем, что число перегородок (21) находится в диапазоне от 3,00 до 8,00.

18. Распределитель по п. 16, отличающийся тем, что перегородки (21) равномерно распределены по окружности дисков, разделяя открытое кольцевое пространство (20) на секции.

19. Распределитель по п. 17, отличающийся тем, что перегородки (21) представляют собой плоские радиально направленные пластины.

20. Распределитель по п. 19, отличающийся тем, что пластины установлены под углом к радиальному направлению в диапазоне значений от 3 до 45°.

21. Распределитель по п. 19, отличающийся тем, что пластины изогнуты в форме спирали.

22. Распределитель по п. 1, отличающийся тем, что расширитель расположен над или под уровнем кипящего слоя над верхней секционирующей решеткой.

23. Распределитель по п. 1, отличающийся тем, что подводящая транспортная труба (19) вынесена из кипящего слоя реактора и/или регенератора и располагается снаружи указанных аппаратов.

24. Распределитель по п. 23, отличающийся тем, что подводящая транспортная труба (19) распределителя реактора вынесена из стакана десорбции циркулирующего катализатора в нижней части реактора или из стакана десорбции и кипящего слоя зоны дегидрирования реактора.

25. Распределитель по любому из пп. 23, 24, отличающийся тем, что транспортная труба (1) распределителя соединена с подводящей транспортной трубой (19) посредством использования соединительной транспортной трубы (5) и поворотных колен (3) и (4).



 

Похожие патенты:

Предложен способ дегидрирования алканов или алкилбензолов до соответствующих алкенов и водорода (Н2), включающий приведение в контакт алкана или алкилбензола с катализатором на основе сульфида металла (MeS), в котором дегидрирование проводят в одном или нескольких реакторах дегидрирования в присутствии сероводорода (H2S) без образования H2S в качестве продукта реакции, водяной пар (H2O) составляет менее 10% (объемного расхода) от используемого газа-носителя для алканов или алкилбензолов, молярное соотношение сероводорода к алканам или алкилбензолам находится между 0,01 и 0,2, молярное соотношение сероводорода (H2S) к водороду (Н2) находится между 0,01 и 0,2, и либо бензол, толуол или комбинации их обоих, либо метан, этан или комбинации их обоих используют в качестве газа-носителя.

Предложен способ получения изопрена на железооксидных катализаторах в адиабатическом реакторе дегидрированием изоамиленов при температуре 580-630°С в присутствии перегретого водяного пара, включающий одновременное перегревание двух потоков водяного пара с получением соответствующих потоков перегретого водяного пара с температурой 550-750°С и направление первого потока перегретого водяного пара на смешение с изоамиленами перед дегидрированием.

Изобретение относится к области нефтехимии и может быть использовано, в частности, в процессах получения олефиновых углеводородов, используемых в производствах синтетических каучуков, пластмасс, высокооктановых компонентов бензина и других органических продуктов.

Изобретение относится к процессам получения олефиновых углеводородов. Изобретение касается способа получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающего приготовление смеси жидкого сырья из свежего и рециклового потоков парафиновых углеводородов, его испарение в теплообменнике-испарителе 3, нагрев полученных паров за счет теплоты контактного газа дегидрирования, охлаждение контактного газа в поверхностных теплообменных аппаратах и дальнейшее охлаждение и очистку контактного газа путем контактирования с орошающей водой в двухступенчатом скруббере 22, разделенном глухой переливной тарелкой 23 на первую ступень контактирования 24 в нижней части скруббера 22 с нижним контуром циркуляции воды и на вторую ступень контактирования 25 в его верхней части с верхним контуром циркуляции воды, имеющим теплообменник-охладитель 26 циркулирующей воды, последующее компримирование охлажденного контактного газа, конденсацию и выделение из углеводородного конденсата ректификацией фракции непрореагировавших парафиновых углеводородов с направлением ее в рецикл на дегидрирование и фракции получаемых олефиновых углеводородов.

Изобретение относится к способу получения олефиновых углеводородов дегидрированием парафиновых углеводородов в кипящем слое пылевидного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающий испарение парафинсодержащего сырья, состоящего из смеси свежего и рециклового потоков парафиновых углеводородов, нагрев полученных паров за счет теплоты контактного газа в закалочном змеевике реактора и их дальнейший перегрев в печи с последующим направлением на дегидрирование, включающий также охлаждение контактного газа дегидрирования в котле-утилизаторе с получением водяного пара за счет испарения водного конденсата, а также в скруббере, орошаемом водой, компримирование охлажденного контактного газа, конденсацию и выделение полученных олефиновых углеводородов и непрореагировавших парафиновых углеводородов.

Предложен способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов, осуществляемый в системе реактор-регенератор с кипящим слоем смеси мелкодисперсных алюмохромовых катализаторов с разными индексами истирания.

Предложен способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов, осуществляемый в кипящем слое мелкодисперсного окисного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающий выжиг кокса и окисление катализатора кислородом воздуха в регенераторе, восстановление окисленного катализатора водород-метансодержащим газом, десорбцию продуктов восстановления и реакции инертным газом, подпитку свежим катализатором.

Изобретение относится к улучшенному способу каталитического дегидрирования. Описан способ каталитического дегидрирования, который включает контактирование алканового или алкилароматического исходного сырья с катализатором дегидрирования, содержащим галлий и платину, нанесенные на носитель, при каталитических условиях в реакторе с восходящим потоком и псевдоожиженным слоем, где реактор с псевдоожиженным слоем включает в себя один или более реакторов, выбранных из группы, состоящей из реакторов с кипящим слоем, реакторов с турбулентным слоем, реакторов с быстрым псевдоожижением и стояк-реакторов, где каталитические условия включают в себя температуру в пределах диапазона от 500°C до 800°C, среднечасовую объемную скорость в пределах диапазона от 0,1 до 1000 час-1, время пребывания газа в пределах диапазона от 0,1 до 10 секунд, и следующим за реактором с псевдоожиженным слоем эффективным разделением унесенного катализатора из реакторного потока с использованием системы циклонного разделения, в которой улучшение включает охлаждение унесенного катализатора и потока, выходящего из реактора, которое происходит до разделения унесенного катализатора из потока, выходящего из реактора, где охлаждение унесенного катализатора и потока, выходящего из реактора, по существу останавливает термические реакции, и, таким образом, эффективно увеличивая общую молекулярную селективность по алкеновому продукту.

Изобретение относится к способу получения олефинов, который содержит: дегидрогенирование первого н-алкана в первой реакционной зоне дегидрогенизации, содержащей по меньшей мере два реактора, с получением первого выходящего потока, содержащего по меньшей мере один из первого н-олефина или первого диолефина; дегидрогенирование по меньшей мере одного из первого изоалкана или второго н-алкана во второй реакционной зоне дегидрогенизации, содержащей по меньшей мере два реактора, с получением второго выходящего потока, содержащего по меньшей мере один из первого изоолефина, второго н-олефина или второго диолефина; где каждый реактор способа работает в циклическом режиме с последовательными стадиями, включающими цикл дегидрогенизации, цикл продувки, цикл регенерации и цикл сброса/выгрузки, и где работа реакторов в цикле дегидрогенизации смещена таким образом, что для реакторов в первой и во второй реакционных зонах дегидрогенизации два реактора не находятся в одно и то же время в цикле продувки и два реактора не находятся в одно и то же время в цикле сброса/выгрузки; сжатие первого выходящего потока; сжатие второго выходящего потока; подачу первого и второго выходящих потоков в общий сепарационный ряд с разделением первого и второго выходящих потоков на две или более фракций.

Изобретение относится к установке и способу дегидрирования этилбензола для получения стирола. Установка включает реакционную секцию, включающую один или более адиабатических реакторов, расположенных последовательно, паровой контур, включающий первый теплообменник для пара, расположенный ниже по потоку от первого адиабатического реактора, и нагревательное устройство, содержащее расположенные в нагревательном контуре и находящиеся в сообщении между собой по текучей среде один или более ультра-нагревателей, одну или более чем одну камеру сгорания, содержащую диффузор пара, горелку и смеситель, и одно или более вентиляционных устройств, где дымовые газы, вырабатываемые в камере сгорания, рециркулируют посредством вентиляционного устройства через нагревательный контур, при этом ультра-нагреватель нагревательного контура расположен между одним адиабатическими реактором и последующим адиабатическим реактором или на линии подачи сырья в первый реактор или по паровому контуру.

Изобретение относится к форсуночному узлу, используемому для впрыска текучих сред, а именно тяжелых масел, таких как остатки от перегонки нефти и битумы, в реакторы с циркулирующим псевдоожиженным слоем, а также к реактору коксования в псевдоожиженном слое, содержащему такую форсунку, и установке коксования содержащей такой реактор.

Изобретение относится к способу изготовления противоэрозионного покрытия на внутренней или наружной стенке камеры установки флюид-каталитического крекинга. Способ включает: (i) крепление множества металлических анкерных элементов на указанной металлической стенке, причем каждый анкерный элемент закрепляют по отдельности изолированным образом к указанной металлической стенке или закрепляют к указанной металлической стенке в сборе с другими идентичными анкерными элементами посредством приварки крепежного края каждого анкерного элемента к металлической стенке, при этом каждый анкерный элемент содержит крепежный край, прикрепленный к металлической стенке, и анкерное тело, жестко соединенное с крепежным краем, имеющее верхний край, который расположен в стороне от крепежного края и определяет плоскость, при этом по меньшей мере одна секция верхнего края, которая не расположена рядом с верхним краем другого идентичного анкерного элемента и не собрана с ним, имеет ограничивающий выступ для ограничения высоты композитного материала, который должен покрывать верхний край анкерного элемента, и ограничивающий выступ имеет ограничивающий край, расположенный на заданном расстоянии от плоскости, определяемой верхним краем анкерного элемента, (ii) нанесение слоя композитного материала на металлическую стенку, толщину которого выбирают таким образом, чтобы композитный материал покрывал или находился заподлицо с ограничивающим краем ограничивающих выступов каждого анкерного элемента, а оставшаяся часть верхнего края каждого анкерного элемента была покрыта слоем композитного материала, толщина которого, по меньшей мере, равна заданному расстоянию.

Изобретение относится к способу получения высушенного порошка из смеси разбавителя и порошка в установке. Установка содержит первую сушильную камеру, представляющую собой сушильную камеру обратного смешения, содержащую один или несколько нагревательных элементов; и вторую сушильную камеру.

Изобретение относится к области производства удобрений, в частности к реактору для производства гранул азотсодержащего удобрения, способу предотвращения образования отложений азотсодержащего удобрения на твердой поверхности реактора и способу нанесения покрытия на твердые поверхности реактора.

Изобретение может быть использовано в химической промышленности. Пентоксид ванадия промышленной категории превращают в окситрихлорид ванадия низкотемпературным хлорированием в псевдоожиженном слое.

Изобретение относится к способу электротермической переработки дисперсного материала в псевдоожиженном слое и устройству для его осуществления. Способ включает подачу через слой дисперсного материала газа в восходящем потоке, обеспечивая псевдоожижение слоя, и пропускание через него электрического тока, при этом дополнительно осуществляют перемешивание дисперсного материала в псевдоожиженном слое путем разделения подаваемого потока газа на струи, которые направляют под углом друг к другу, или путем изменения пространственного распределения плотности электрического тока.

Изобретение относится к способу остановки работающей трехфазной барботажной реакторной колонны суспензионного типа. Способ остановки колонны, включающей направленные вниз газораспределительные форсунки, погруженные в основную часть суспензии из твердого материала в виде частиц, суспендированного в жидкости суспензии, содержащейся внутри реакторной емкости, находящиеся в жидкостной связи с линией подачи газа, по которой газ подают в газораспределительные форсунки, посредством которых газ впрыскивается вниз в основную часть суспензии, и имеющие выпускные отверстия, которые находятся на одной высоте, предусматривает внезапную остановку потока газа из линии подачи газа в газораспределительные форсунки путем активации быстродействующего клапана на линии подачи газа для перекрытия линии подачи газа к газораспределительным форсункам, чтобы таким образом удерживать газ в газораспределительных форсунках для предотвращения попадания суспензии вверх в газораспределительные форсунки, при этом быстродействующий клапан характеризуется временем отклика от 1 до 5 секунд от момента активации до полного закрытия клапана.

Настоящее изобретение относится к способу облагораживания кубовых остатков углеводородов (варианты) и к вариантам системы для его осуществления. Один из способов включает контактирование первой порции фракции кубовых остатков углеводородов и водорода с первым катализатором для гидроконверсии в первой реакторной системе гидроконверсии с кипящим слоем; извлечение первого эффлюента из первой реакторной системы гидроконверсии; фракционирование первого эффлюента из первой реакторной системы гидроконверсии с кипящим слоем и второго эффлюента из второй реакторной системы гидроконверсии с выделением одной или нескольких углеводородных фракций, включая фракцию остатка вакуумной дистилляции нефти в стандартной системе для фракционирования; деасфальтизацию растворителем фракции остатка вакуумной дистилляции нефти, получая фракцию деасфальтизированного масла и обработанную фракцию битума; контактирование обработанной фракции деасфальтизированного масла и водорода со вторым катализатором гидроконверсии во второй реакторной системе гидроконверсии; извлечение второго эффлюента из второй реакторной системы гидроконверсии; контактирование обработанной фракции битума, второй части фракции кубовых остатков углеводородов и водорода с третьим катализатором гидроконверсии в третьей реакторной системе гидроконверсии с кипящим слоем; извлечение третьего эффлюента из третьей реакторной системы гидроконверсии и фракционирование третьего эффлюента из третьей реакторной системы гидроконверсии с выделением одной или нескольких углеводородных фракций.

Изобретение относится к способу прогнозирования объемного содержания газа в колонне в зависимости от условий эксперимента. Способ заключается в определении объемного содержания газа в трех зонах в колонне с выявлением средневзвешенного значения для каждой зоны и применении алгоритма, описывающего объемное содержание газа внутри барботажного колонного суспензионного реактора.

Изобретение относится к химическому машиностроению и может быть использовано для распределения катализатора, циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды.
Наверх