Фотохромные производные 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2н-1-бензопиран-2,2'-индолина]

Изобретение относится к новым соединениям в ряду индолиновых спиробензопиранов (SP), а именно к сложноэфирным производным 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] общей формулы

, где R = HS-(CH2)n-; где n=1 (SP 1), n=2 (SP 2), n=10 (SP 3);

HOOC(CH2)2SS(CH2)2-(SP 4);

которые могут быть использованы в качестве фотоактивных комплексообразователей с квантовыми точками и катионами металлов. Изобретение может найти применение в области нанофотоники для создания молекулярных переключателей, сенсорных устройств, для детекции ионов и для расширения компонентной базы устройств молекулярной электроники. 1 з.п. ф-лы, 1 табл., 4 ил., 7 пр.

 

Изобретение относится к новым соединениям в ряду индолиновых спиробензопиранов (SP), которые могут быть использованы в качестве фотоактивных комплексообразователей с квантовыми точками (QD) и катионами металлов. Изобретение может найти применение в области нанофотоники для создания молекулярных переключателей, сенсорных устройств, для детекции ионов и для расширения компонентной базы устройств молекулярной электроники.

Оптическими свойствами таких систем можно обратимо управлять, воздействуя светом с контролируемой длиной волны. Хорошо известно, что в молекулах спиропиранов при освещении светом с длиной волны ≤ 300-350 нм происходит раскрытие пиранового цикла с образованием окрашенной мероцианиновой формы (В). Данный процесс обратим: обратный переход в спироформу (А) происходит или путем самопроизвольной циклизации в темноте, или при освещении мероцианиновой формы видимым светом.

Спектральные свойства и параметры фотопревращений спиробензопиранов зависят от типа и места расположения имеющихся в молекуле заместителей, поэтому направленное варьирование природы и места введения терминальной якорной группы (спейсера), позволяет проводить поиск новых структур фотохромов с требуемыми фотохимическими характеристиками и заданной селективностью связывания с целевыми лигандами и мишенями.

Известно, что введение заместителей по индолиновой части молекулы спиробензопиранов не приводит к существенным изменениям максимума поглощения окрашенной мероцианиновой формы [Панцырный В.И., Гальберштам М.А., Донская Н.А. О влиянии заместителей в положениях 5- и 8'- на скорость реакции темнового обесцвечивания фотоокрашенных растворов 1,3,3-триметилспиро[индолин-2,2'-[2Н-1]бензопиранов] // Химия гетероциклических соединений. 1973, №5, с. 653-658], что позволяет вводить реакционно-способные спейсеры различной природы путем прямой модификации индолинового фрагмента молекулы спиропирана. В частности, разработаны способы направленной модификации спиробензопиранового фотохрома по 5-положениюиндолинового фрагмента [RU 2458927, С1, опубл. 20.08.2012].

Серия фотохромных производных 5'-винил-6-нитроспиробензопиранов, в которых где R1=R2=H; R1=CN, R2=H; R1=CHO, R2=H; R1=NO2, R2=H; R1=CN, R2=CN; R1=CO2CH3, R2-CN; R1=R2=C(O)-O-C(CH3)2-O-(O)C получена олефинированием по Виттигу или Хорнеру-Эммонсу карбонильного предшественника илидами или анионами фосфонатов, или нуклеофильным присоединением по карбонильной группе реагентов, содержащих активные метальные или метиленовые группы (нитрометан, малонодинитрил, цианоуксусная кислота и ее эфиры, кислота Мельдрума). Исходным соединением служил 6-нитро-1',3',3'-триметил-5'-формилспиро[2Н-1-бензопиран-2,2'-индолин], способ получения которого защищен патентом [RU 2358977, С1, опубл. 20.06.2009].

Описаны 6-нитро-замещенные спиробензопираны, содержащие реакционно-способные спейсеры с терминальной тройной связью, присоединенные по 5' положению индолиновой части молекулы и предназначенные для модификации компонентов и фрагментов нуклеиновых кислот по реакции Соногаширы [Laptev A.V.; Lukin A.Yu.; Belikov N.E.; Barachevskii V.A.; Demina O.V.; Khodonov A.A.; Varfolomeev S.D.; Shvets V.I. Ethynyl-equipped Spirobenzopyrans as Promising Photochromic Markers for Nucleic Acid Fragments // Mendeleev Communications 2013, v. 23, №3, p. 145-146]. В работе [Laptev A.V.; Lukin A.Yu.; Belikov N.E.; Demina O.V.; Khodonov A.A.; Shvets V.I. New maleimide spirobenzopyran derivatives as photochromic labels for macromolecules with sulfhydryl groups // Mendeleev Communications, 2014, v. 24, p. 245-246] представлены 5'-малеинимидные производные спиробензопиранов, предназначенные для модификации белковых фрагментов, содержащих остатки цистеина.

Общим недостаткам упомянутых фотоактивных спиропирановых производных является отсутствие в их структуре серу-содержащих групп, что ограничивает возможности их применения для модификации таких неорганических наноструктур, как квантовые точки.

Описаны гибридные фотоактивные системы, представляющие собой комплексы катионов или наночастиц металлов или наносистемы на основе квантовых точек с фотохромными лигандами, с терминальной якорной серу-содержащей-группой, расположенной в разных положениях молекулы фотохрома в качестве ионофорного фрагмента молекулы. Например, описана фотохромная система на основе квантовых точек QD CdSe-ZnS и CdS и фотохромного лиганда 2-[3',3'-диметил-6-нитроспиро(2H-1-бензопиран-2,2'-индолин)-1'-ил]этилового эфира 5-(1,2-дитиолан-3-ил)пентановой кислоты, в которой бидентантный серу-содержащий фрагмент этилового эфира 5-(1,2-дитиолан-3-ил)пентаноата бьш введен в положение N1 индолинового фрагмента молекулы спиропирана [Tomasulo М., Yildiz I., Raymo F.M. Luminescence Modulation with Semiconductor Quantum Dots and Photochromic Ligands // Australian J. Chem., 2006, v. 59, №3, p. 175-178; Tomasulo M., Yildiz I., Raymo F.M. Nanoparticle-induced transition from positive to negative photochromism // Inorganic Chim. Acta, 2007, v. 360, №3, p. 938-944;]. Топография подобных фотоактивных систем на основе спиропирановых лигандов, содержащих спейсеры с терминальными серу-содержащими группами по положению N1, имеет пространственные ограничения, допускающие реализацию лишь перпендикулярной взаимной ориентации фрагментов как в спиро- (А), так и в фотоиндуцированной мероцианиновой формах (В) фотохрома, что отрицательно сказывается на квантовом выходе реакции раскрытия пиранового цикла и времени жизни фотоиндуцированной мероцианиновой формы (В). Подходы к их получению требуют применения сложных и многостадийных методов формирования молекулы целевых спиропиранов.

В качестве альтернативного подхода авторами была предложена структура фотоактивного лиганда, содержащая серу-содержащий фрагмент по положению 5' индолиновой части молекулы фотохрома [Звездин К.В., Беликов Н.Е., Лаптев А.В., Лукин А.Ю., Демина О.В., Левин П.П., Бричкин С.Б., Спирин М.Г., Разумов В.Ф., Швец В.И., Ходонов А.А. Новые гибридные фотохромные материалы с переключаемой флуоресценцией // Российские нанотехнологии, 2012, т. 7, №5-6, с. 112-118]. В работе описано получение, взятого в качестве прототипа, 2-меркаптоэтиламида 3-[6-нитро-1',3',3'-триметилспиро(2H-1-бензопиран-2,2'-индолин)-5'-ил]пропеновой кислоты и его применение в качестве фотохромного лиганда для модификации поверхности квантовых точек QD CdSe. Продукт получают активированием карбоксильной группы 3-[6-нитро-1',3',3'-триметилспиро(2H-1-бензопиран-2,2'-индолин)-5'-ил]пропеновой кислоты при помощи метода смешанных ангидридов с использованием изобутилхлорформиата с последующим ее превращением в целевой амид взаимодействием с цистеамином. Топография и размеры молекулы этого лиганда существенно отличаются от ранее известных производных, где спейсер вводился в положение N1. К недостаткам прототипа следует отнести невысокие суммарные выходы целевого соединения, а также ограниченные возможности диверсификации структуры молекулы целевого лиганда из-за отсутствия коммерчески доступных источников серу-содержащих аминов с различной длиной спейсера. Также следует отметить, что прототип характеризуется невысокими значениями эффективности фотоокрашивания ΔDBфот=0,25-0,65.

Проблема, решаемая настоящим изобретением, состоит в расширении арсенала спиробензопирановых фотохромных лигандов, которые могут быть применены в качестве фотоактивных комплексообразователей с квантовыми точками и катионами металлов.

Проблема решена предлагаемой серией новых фотоактивных сложноэфирных производных 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] общей формулы

где R=

HS-(CH2)n-; где n=1 (SP 1), n=2 (SP 2), n=10 (SP 3);

HOOC(CH2)2SS(CH2)2- (SP 4);

Сущность изобретения состоит в том, что в качестве лигандов для образования комплексов между фотоиндуцированной мероцианиновой формой спиропирановых фотохромных соединений с квантовыми точками и ионами металлов предложены новые сложные эфиры 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина], содержащие фрагмент с терминальной серу-содержащей группой. Наличие нитро-группы в 6-положении фотохромного звена необходимо для проявления выраженных фотохромных свойств. Предлагаемые структуры соединений SP 1-5 отличаются от прототипа строением спейсеров, обеспечивающих комплексообразование молекулы фотохрома с поверхностью квантовых точек. Соединения SP 1-5 также способны образовывать фотоактивные комплексы с катионами некоторых металлов.

Сущность изобретения поясняется следующими иллюстрациями:

На Фиг. 1 показаны спектры поглощения растворов соединения SP 3 в хлороформе, этаноле, тетрагидрофуране и толуоле до УФ облучения (кривые 1, 3, 5 и 7 соответственно) и после УФ облучения (кривые 2, 4, 6, 8 соответственно). Концентрация растворов С=10-5÷5×10-5 моль/л.

На Фиг. 2 показаны спектры флуоресценции в хлороформе: препарат квантовых точек QD CdSe, 3.7 нм (кривая 9); мероцианиновая форма лиганда SP 5 (кривая 10); конъюгат SP 5-QD CdSe (кривая 11).

На Фиг. 3 показаны спектры поглощения в этаноле: спиро-форма лиганда SP 5 (кривая 12); мероцианиновая форма лиганда SP 5 (кривая 13); комплекс мероцианиновой формы лиганда SP 5 с Al(NO3)3 (кривая 14); комплекс мероцианиновой формы лиганда SP 5 с La(NO3)3 (кривая 15).

На Фиг. 4 показаны спектры поглощения в этаноле: спиро-форма лиганда SP 4 (кривая 16); мероцианиновая форма лиганда SP 4 (кривая 17); комплекс мероцианиновой формы лиганда SP 4 с Al(NO3)3 (кривая 18), комплекс мероцианиновой формы лиганда SP 4 с La(NO3)3 (кривая 19).

Получение заявленных соединений SP 1-5 показано на схемах 1-4, где

Ключевое соединение 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин] (2) получают по ранее разработанному нами методу [Laptev A.V.; Lukin A.Yu.; Belikov N.E.; Barachevskii V.A.; Demina O.V.; Khodonov A.A.; Varfolomeev S.D.; Shvets V.I. Ethynyl-equipped Spirobenzopyrans as Promising Photochromic Markers for Nucleic Acid Fragments // Mendeleev Communications 2013, v. 23, №3, p. 145-146, DOI: 10.1016/j.mencom.2013.05.008, Supplementary Materials] восстановлением 6-нитро-1',3',3'-триметил-5'-формилспиро[2H-1-бензопиран-2,2'-индолина] (1) борогидридом натрия.

Исходный 6-нитро-1',3',3'-триметил-5'-формилспиро[2H-1-бензопиран-2,2'-индолин] (1) получают согласно [RU 2358977 С1, опубл. 20.06.2009].

Пример 1. Получение [6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метилового эфира 2-меркаптоуксусной кислоты (SP 1) (Схема 1)

К охлажденному до -5°С раствору 300 мг (1,59 ммоль) N-гидроксисукцинимидного эфира тиогликолевой кислоты (3) и 352 мг (1 ммоль) 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] (2) в 30 мл абсолютного дихлорометана при перемешивании в атмосфере аргона добавляют 0,44 мл (3,18 ммоль) триэтиламина и затем - 20 мг (0,159 ммоль) 4-(диметиламино)пиридина (DMAP). Реакционную смесь оставляют при перемешивании при 20°С в течение 3 дней, затем разбавляют 100 мл дихлорометана, промывают 1М раствором соляной кислоты до рН 4-5, водой до рН 7, органический экстракт сушат над сульфатом натрия и затем растворитель удаляют.

Для выделения целевого продукта используют флеш-хроматографию на силикагеле, элюент - смесь дихлорометана с 95% этанолом с градиентом последнего от 0 до 40%.

Выход продукта реакции SP 1 218 мг (51%), в виде масла, Rf 0,58, система петролейный эфир (т. кип. 40-70°С) - этилацетат 8:2, по объему, пластинка "Kieselgel 60F254", детекция пятен воздействием на проявленную пластинку УФ-света.

Спектр ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 1,18 (3Н, с, 3'а-СН3), 1,28 (3Н, с, 3'b-СН3), 2,71 (2Н, т, J 7,1, 2''-СН2СО), 2,72 (3Н, с, 1'-СН3), 5,01 (2Н, с, 5'-СН2), 5,84 (1Н, д, J 10,4, 3-Н), 6,51 (1H, д, J 7,8, 7'-Н), 6,76 (1Н, д, J 8,6, 8-Н), 6,92 (1Н, д, J 10,4, 4-Н), 7,11 (1Н, с, 4'-Н), 7,18 (1Н, д, J 7,8, 6'-Н), 7,99 (1Н, д, J 2,4, 5-Н), 8,01 (1Н, дд, J 8,8/2,8, 7-Н).

Масс-спектр [m/z]: 426,1 (М+).

Найдено (%): С 62,05; Н 5,29; N 6,52. C22H22N2O5S. Вычислено (%): С, 61,96; Н, 5,20; N, 6,57.

Пример 2. Получение 6-карбокси-1-{6-нитро-1',3',3'-триметилспиро[(2H-1-бензопиран-2,2'-индолин)-5'-ил]метоксикарбонил}-3,4-дитиагексана (SP 4) (Схема 2)

Необходимый реагент для проведения процесса ацилирования спирта (2)-ангидрид 3,3'-дитио-3,3'-дипропионовой кислоты (4) получают с выходом 65%, как описано в работе [Liu С., Yuan J., Luo X., Chen M., Chen Z., Zhao Y., Li X. Folate-Decorated and Reduction-Sensitive Micelles Assembled from Amphiphilic Polymer-Camptothecin Conjugates for Intracellular Drug Delivery // Mol. Pharmaceutics, 2014, v. 11, №11, p. 4258-4269].

К раствору, содержащему 218 мг (1,13 ммоль) ангидрида 3,3'-дитио-3,3'-дипропионовой кислоты (4), 200 мг (0,568 ммоль) 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] (2) и 7 мг (0,057 ммоль) 4-(диметиламино)пиридина (DM АР) в 30 мл абсолютного дихлорометана, при перемешивании в атмосфере аргона по каплям добавляют раствор 0,16 мл (1,13 ммоль) триэтиламина в 2 мл абсолютного дихлорометана и перемешивают при 20°С в течение 48 ч, затем реакционную массу промывают 3% раствором соляной кислоты до рН 4-5, водой до рН 7, органический слой сушат над сульфатом натрия и растворитель удаляют. Целевой продукт SP 4 выделяют при помощи колоночной хроматографии на силикагеле, элюент - смесь петролейного эфира (т. кип. 40-70°С) с этилацетатом с градиентом последнего от 0 до 100%.

Выход продукта реакции 133 мг (43%) в виде масла, Rf 0,28, система - петролейный эфир (т. кип. 40-70°С) - этилацетат 4:6 по объему, пластинка "Kieselgel 60F254", детекция пятен воздействием на проявленную пластинку УФ-света.

Спектры ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 1,18 (3Н, с, 3'а-СН3), 1,29 (3Н, с, 3'b-СН3), 2,74 (3Н, с, 1'-СН3), 2,77 (4Н, тд, J 7,1/2,6, 2'',2'''-СН2СО), 2,90 (2Н, т, J 7,1, 2'''-СН2), 2,95 (2Н, т, J 7,1, 3''-СН2), 5,09 (2Н, с, 5'-СН2), 5,84 (1Н, д, J 10,3, 3-Н), 6,51 (1Н, д, J 7,9, 7'-Н), 6,76 (1Н, д, J 8,6, 8-Н), 6,92 (1Н, д, J 10,3, 4-Н), 7,08 (1Н, д, J 1,4, 4'-Н), 7,20 (1Н, дд, J 7,9/1,5, 6'-Н), 7,99 (1Н, д, J 2,4, 5-Н), 8,01 (1Н, дд, J 8,8/2,7, 7-Н).

Пример 3. Получение [6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метилового эфира 3-меркаптопропионовой кислоты (SP 2) (Схема 2)

133 мг (0,024 ммоль) 6-карбокси-1-{6-нитро-1',3',3'-триметилспиро[(2H-1-бензопиран-2,2'-индолин)-5'-ил]метоксикарбонил}-3,4-дитиагексана SP 4 растворяют в 10 мл этанола, добавляют 12 мг борогидрида на полимерной подложке (Amberlite А-26 BH4-форма, Fluka) и встряхивают на шейкере IKA Vortex Genius-3 4 ч, после чего восстановитель отделяют декантированием, промывают 5 мл этанола, этанол упаривают. Целевой продукт SP 2 выделяют при помощи колоночной хроматографии на силикагеле, элюент - смесь петролейного эфира (т. кип. 40-70°С) с этилацетатом с градиентом последнего от 0 до 100%.

Выход продукта реакции 76 мг (71%), в виде масла, Rf 0,87, система петролейный эфир (т. кип. 40-70°С) - этилацетат 4:6 по объему, пластинка "Kieselgel 60F254", детекция пятен воздействием на проявленную пластинку УФ-света.

Спектр ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 1,18 (3Н, с, 3'а-СН3), 1,29 (3Н, с, 3'b-СН3), 2,72 (3Н, с, 1'-СН3), 2,81 (2Н, т, J 7,1, 2''-СН2СО), 3,77 (2Н, т, J 6,0, 3''-СН2), 4,64 (2Н, с, 5'-СН2), 5,85 (1Н, д, J 10,3, 3-Н), 6,52 (1Н, д, J 7,9, 7'-Н), 6,75 (1Н, д, J 8,7, 8-Н), 6,92 (1Н, д, J 10,3, 4-Н), 7.12 (1Н, д, J 1.3, 4'-Н), 7.19 (1Н, дд, J 7.9/1.5, 6'-Н), 7.99 (1Н, д, J 2,6, 5-Н), 8,01 (1Н, дд, J 8,8/2,6, 7-Н).

Масс-спектр [m/z]: 440,5 (М+).

Найдено (%): С 62,65; Н 5,43; N 6,42. C23H24N2O5S. Вычислено (%):С, 62,71; Н, 5,49; N, 6,36.

Пример 4. Получение [6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метилового эфира 11-меркаптоундекановой кислоты (SP 3) (схема 3)

Вариант 1.

К охлажденному до -5°С раствору 47 мг (0,215 ммоль) 11-меркаптоундекановой кислоты (5) в 30 мл абсолютного дихлорометана при перемешивании в атмосфере аргона по каплям добавляют раствор 53 мг (0,256 ммоль) N,N-дициклогексилкарбодиимида в 5 мл абсолютного дихлорометана и перемешивают в течение 30 мин, после чего добавляют раствор 50 мг (0,142 ммоль) 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] (2) и 17 мг (0,142 ммоль) 4-(диметиламино)пиридина (DMAP) в 10 мл абсолютного дихлорометана. Через 6 ч перемешивания выпавший осадок N,N-дициклогексилмочевины отделяют фильтрованием, фильтрат промывают 3% раствором соляной кислоты до рН 4-5, водой до рН 7, органический слой сушат над сульфатом натрия и затем растворитель удаляют. Целевой продукт SP 3 выделяют при помощи колоночной хроматографии на силикагеле, элюент - смесь петролейного эфира (т. кип. 40-70°С) с этилацетатом с градиентом последнего от 0 до 100%.

Выход продукта реакции 39 мг (50%), в виде масла, Rf 0,61, система петролейный эфир (т. кип. 40-70°С) - этилацетат 2:1, по объему, пластинка "Kieselgel 60F254", детекция пятен воздействием на проявленную пластинку УФ-света.

Спектр ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 1,18 (3Н, с, 3'а-СН3), 1,24 (3Н, с, 3'b-СН3), 1,26-1,30 (8Н, м, 5''-8''-СН2), 1,31 (2Н, м, 4''-СН2), 1,36 (2Н, т, J 7,2, 9''-СН2), 1,59 (2Н, т, J 7,4, 10''-СН2), 1,61 (2Н, м, 3''-СН2), 2,33 (2Н, т, J 7,4, 2''-СН2), 2,50 (2Н, дд, J 7,4/14,7, 11''-СН2), 2,73 (3Н, с, 1'-СН3), 5,06 (2Н, с, 5'-СН2), 5,84 (1H, д, J 10,4, 3-Н), 6,52 (1Н, д, J 7,9, 7'-Н), 6,76 (1Н, д, J 8,8, 8-Н), 6,92 (1Н, д, J 10,4, 4-Н), 7,07 (1Н, с, 4'-Н), 7,20 (1Н, д, J 7,9, 6'-Н), 7,99 (1Н, д, J 2,6, 5-Н), 8,01 (1Н, дд, J 8,8/2,7, 7-Н).

Масс-спектр [m/z]: 552,3 (М+).

Найдено (%): С 67,29; Н 7,21; N 5,04. C31H40N2O5S. Вычислено (%): С, 67,36; Н, 7,29; N, 5,07.

Вариант 2.

К охлажденному до -5°С раствору 94 мг (0,43 ммоль) 11-меркаптоундекановой кислоты (5) в 30 мл абсолютного дихлорометана при перемешивании в атмосфере аргона по каплям добавляют раствор 0,2 мл (0,86 ммоль) триэтиламина в 2 мл абсолютного дихлорометана, затем - раствор 0,08 мл (0,86 ммоль) этилхлорформиата в 5 мл абсолютного дихлорометана и перемешивают в течение 30 мин, после чего добавляют раствор 100 мг (0,284 ммоль) 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] (2) и 34 мг (0,284 ммоль) 4-(диметиламино)пиридина (DMAP) в 10 мл абсолютного дихлорометана. Через 24 ч перемешивания при 20°С реакционную массу промывают 3% раствором соляной кислоты до рН 4-5, водой до рН 7, органический слой сушат над сульфатом натрия и затем растворитель удаляют. Целевой продукт SP 3 выделяют при помощи колоночной хроматографии на силикагеле, элюент смесь петролейного эфира (т. кип. 40-70°С) с этилацетатом с градиентом последнего от 0 до 100%.

Выход продукта реакции 86 мг (55%), в виде масла, Rf 0,61, система петролейный эфир (т. кип. 40-70°С) - этилацетат 2:1 по объему, пластинка "Kieselgel 60F254", детекция пятен воздействием на проявленную пластинку УФ-света.

Физико-химические и спектральные характеристики продукта идентичны образцу, полученному по варианту 1.

Пример 5. Получение [6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метилового эфира 5-(1,2-дитиолан-3-ил)пентановой кислоты (SP 5) (схема 4)

Вариант 1.

[6-Нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метиловый эфир 5-(1,2-дитиолан-3-ил)пентановой кислоты SP 5 получают с выходом 72% аналогично примеру 4, вариант 1 с отличием, которое состоит в том, что вместо 11-меркаптоундекановой кислоты (5) в реакции ацилирования используют 5-(1,2-дитиолан-3-ил)пентановую кислоту (7).

Вариант 2.

[6-Нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолин]-5'-ил]метиловый эфир 5-(1,2-дитиолан-3-ил)пентановой кислоты SP 5 получают с выходом 42%, аналогично примеру 4, вариант 2 с отличием, которое состоит в том, что вместо 11-меркаптоундекановой кислоты (5) в реакции ацилирования используют 5-(1,2-дитиолан-3-ил)пентановую кислоту (7).

Спектры ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 1,18 (3Н, с, 3'а-СН3), 1,29 (3Н, с, 3'b-СН3), 1,48 (2Н, м, 4''-СН2), 1,68 (4Н, м, 3''- и 5''-СН2), 1,88 (1H, тд, J 13,8/6,9, 7''-СН2), 2,36 (2Н, т, J 7,4, 2''-СН2), 2,44 (1Н, тд, J 12,1/5,8, 7''-СН2), 2,73 (3Н, с, 1'-СН3), 3,10 (1Н, дт, J 11,1/7,0, 8''-СН2), 3,16 (1H, ддд, J 12,3/7,0/5,6, 8''-СН2), 3,55 (1H, м, 6''-СН), 5,06 (2Н, с, 5'-СН2), 5,84 (1Н, д, J 10,4, 3-Н), 6,52 (1Н, д, J 7,9, 7'-Н), 6,76 (1Н, д, J 8,8, 8-Н), 6,92 (1Н, д, J 10,4, 4-Н), 7.07 (1Н, с, 4'-Н), 7,20 (1Н, д, J 7,9, 6'-Н), 7,99 (1Н, д, J 2,6, 5-Н), 8,01 (1Н, дд, J 8,8/2,7, 7-Н).

ЯМР 13С (126 МГц, CDCl3, δ, м.д.): 20,1/26,1 (3'-СН3), 24,9 (3''-СН2), 28,9 (1'-СН3), 29,1 (4''-СН2), 34,4 (2'-СН2), 34,8 (5''-СН2), 38,7 (8'-СН2), 40,4 (7''-СН2), 52,4 (3'-С), 56,5 (6''-СН), 66,9 (5'-СН2), 106,6 (2-С), 107,0 (7'-С), 115,7 (8-С), 118,8 (4а-С), 121,6 (3-С), 122,7 (4'-С), 122,9 (5-С), 126,1 (7-С), 127,4 (5'-С), 128,6 (4-С), 129,2 (6'-С), 136,8 (3'a-С), 141,2 (6-С), 148,1 (7а'-С), 159,8 (8а-С), 173,7 (1''-С).

Масс-спектр [m/z,]: 540,2 (М+).

Найдено (%): С 62,25; Н 6,03; N 5,12. C28H32N2O5S2. Вычислено (%):С, 62,20; Н, 5,97; N, 5,18.

Физико-химические и спектральные характеристики образцов SP 5, полученные по вариантам 1 и 2, идентичны.

Электронные спектры поглощения полученных соединений регистрируют на спектрофотометре "Shimadzu 1240РС" с приставкой для термостатирования образцов. Фотоиндуцированные формы полученных соединений получают облучением светом ксеноновой лампы Hamamatsu модель Lightingcure - LC8 (Hamamatsu, Япония) через светофильтр УФС-2.

Спектры поглощения фотоиндуцированных форм регистрируют при помощи системы модульных оптоволоконных спектрофотометров фирмы Ocean Optics (США): электронные спектры поглощения получают на спектрофотометре модель HR-2000+, а спектры флуоресценции - на спектрофлуориметре модель USB4000-FL.

Определенные по стандартным методикам спектрально-абсорбционные и спектрально-флуоресцентные характеристики спиро- (А) и мероцианиновых форм (В) при 25°С приведены в Табл. 1 и на Фиг. 1-4.

λA, λB - максимумы полос в спектрах поглощения соответственно спиро-формы (А) и фотоиндуцированной мероцианиновой формы (В) производных спиропирана;

λФЛ максимумы полос в спектрах флуоресценции.

ΔDBфот - эффективность фотоокрашивания определяют как максимальное фотоиндуцированное изменение оптической плотности в максимуме полосы поглощения фотоиндуцированной формы И в состоянии фоторавновесия при одинаковой величине оптической плотности (D≈0.8) в максимуме полосы поглощения исходной формы А.

Максимумы λA в спектрах поглощения спиро-форм (А) соединений SP 1-5 расположены в интервале 330-342 нм и мало зависят от природы растворителя. В спектрах поглощения фотоиндуцированных окрашенных мероцианиновых форм (В) соединений SP 1-5 наблюдается явление сольватохромизма. В качестве примера на Фиг. 1 показаны спектры поглощения растворов соединения SP 3 в хлороформе, этаноле, ТГФ и толуоле до УФ облучения (кривые 1, 3, 5 и 7 соответственно) и после УФ облучения (кривые 2, 4, 6, 8 соответственно). В полярном этаноле (кривая 4) спектр фотоиндуцированной мероцианиновой формы соединения SP 3 характеризуется единственной полосой поглощения λB=542 нм, которая смещена в коротковолновую область относительно соответствующей полосы в толуольном растворе λB=604 нм (кривая 8). Спектры поглощения фотоиндуцированных мероцианиновых форм соединений SP 3, SP 5 в толуоле содержат полосу с характерным максимумом и плечом в области 580 нм (Фиг. 1, табл. 1).

Таким образом, все предлагаемые спиробензопираны SP 1-5 обладают ярко выраженными фотохромными свойствами. Все соединения характеризуются значениями эффективности фотоокрашивания ADBфот, в 3-5 раз превышающими соответствующие значения для прототипа.

Возможность применения заявленных соединений в качестве фотоактивных лигандов для образования гибридных структур с квантовыми точками продемонстрирована на следующем примере, в котором в качестве фотохромных лигандов взяты соединения SP 3 и SP 5.

Пример 6. Получение конъюгатов QD CdSe с фотохромными лигандами.

Препарат квантовых точек QD CdSe 3.7 нм приготовлен как описано в работе [Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Неизотермический высокотемпературный коллоидный синтез наночастиц CdSe. // Российские нанотехнологии. 2009. Т. 4. №11-12. С. 92-95].

Конъюгаты QD CdSe с фотохромными лигандами получают смешиванием растворов компонентов в хлороформе в соотношении молярных концентраций QD CdSe:SP=1:100. Смесь перемешивают в темноте при комнатной температуре в течение 2 ч.

В табл. 1 сопоставлены спектральные характеристики фотоактивных гибридных комплексов (конъюгатов), включающих квантовые точки QD CdSe и лиганды SP 3 или SP 5, со спектральными характеристиками исходных компонентов.

Флуоресценцию нанокристаллов CdSe возбуждают облучением их раствора в хлороформе УФ-светом через фильтр УФС-2 (300-350 нм). Максимум флуоресценции раствора препарата QD CdSe в хлороформе приходится на 598 нм, ширина полосы на полувысоте 30 нм. На Фиг. 2 в качестве примера сопоставлены спектры флуоресценции в хлороформе: препарата QD CdSe, 3.7 нм (кривая 9), раствора мероцианиновой формы лиганда SP 5 (кривая 10) и конъюгата SP 5-QD CdSe (кривая 11). При освещении образца в этих условиях модификация поверхности квантовых точек QD CdSe фотохромными лигандами вызывает тушение их собственной флуоресценции при λФЛ=598 нм и индукцию флуоресценции мероцианиновой формы спиропиранового фрагмента лиганда при λФЛ=670 нм. При переходе спиропиранового лиганда в окрашенную мероцианиновую форму под действием УФ-облучения флуоресценция исходных квантовых точек QD CdSe исчезает вследствие, по-видимому, явления резонансного переноса энергии флуоресценции. Вместо нее появляется флуоресценция мероцианиновой формы при λФЛ=670 нм. Аналогичные процессы имеют место при использовании в качестве фотохромного лиганда любого из заявленных соединений SP 1-5. Процесс фотоуправляемого циклического переключения флуоресценции комплексов квантовых точек QD CdSe со спиропирановыми лигандами может быть проведен неоднократно простым изменением длины волны возбуждающего света с 300-350 нм на 500-530 нм и обратно.

Все полученные соединения SP 1-5 образуют фотоуправляемые системы с катионами металлов. В качестве примеров в Табл. 1 и на Фиг. 3 и 4 приведены спектральные характеристики фотоактивных комплексов, включающих лиганды SP 1, SP 2, SP 4 и SP 5 с ионами Al3+ и La3+, полученных, как описано в примере 7.

Пример 7. Получение комплексов катионов металлов со спиропирановыми лигандами.

Комплексы фотохромных лигандов с катионами металлов получают добавлением от 1 до 100 эквивалентов нитратов одно-, двух- и трехвалентных металлов к раствору 1 эквивалента лиганда в этаноле и последующей засветкой образца светом ксеноновой лампы фирмы Hamamatsu модель Lightingcure - LC8 (Hamamatsu, Япония) через светофильтр УФС-2. Процесс контролируют регистрацией спектров поглощения в диапазоне длин волн 350-700 нм.

Образцы фотохромных лигандов растворяют в этаноле (С=10-5÷5×10-5 моль/л), измеряют спектры поглощения растворов, определяют максимумы полос поглощения. Затем растворы облучают УФ светом ксеноновой лампы LC-8 фирмы "Hamamatsu" через светофильтр УФС-2, повторно измеряют спектры поглощения растворов и определяют максимумы полос поглощения в видимой области спектра.

Совпадение максимумов полос поглощения фотоиндуцированной мероцианиновой формы с максимумом этой формы в растворе, содержащем ионы металла, свидетельствует об отсутствии в растворе комплексов с этим катионом.

Об образовании комплекса свидетельствует гипсохромный сдвиг основной полосы фотоиндуцированной мероцианиновой формы ΔλBB(свободный лиганд)В(комплекс).

Обнаружено, что изменения максимума полосы поглощения при λB=530-540 нм мероцианиновой формы спиропирановых лигандов при взаимодействии с нитратами лития, натрия, калия, магния, кальция, бария, кобальта, никеля не превышают 3-5 нм и не представляют практического интереса.

Катионы Al3+ взаимодействуют с мероцианиновой формой лигандов с образованием комплексов с гипсохромным сдвигом максимума полосы поглощения ΔλB=124-129 нм.

Таким образом, приведенные данные подтверждают достижение технического результата - получение серии новых спиробензопирановых фотохромных лигандов, способных выступать в качестве фотоактивных комплексообразователей с квантовыми точками и катионами металлов.

1. Фотохромные производные 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] общей формулы

где R=HS-(CH2)n-, где n=1 (SP 1), n=2 (SP 2), n=10 (SP 3);

HOOC(CH2)2SS(CH2)2-(SP 4);

2. Фотохромные производные по п. 1, отличающиеся тем, что они образуют фотоактивные комплексы с квантовыми точками и катионами металлов.



 

Похожие патенты:

Изобретение относится к новым соединениям, а именно к 4-замещенным-3-(1-алкил-2-хлор-1Н-индол-3-ил)фуран-2,5-дионам общей формулы I ,где R1=H, C1-С 6 алкил; R2=H, C1-С6 алкил, C1-С6 алкокси; R3 = фенил, нафтил, 2-фенил-1-этенил, тиенил, фурил, пирролил, бензотиофенил, бензофуранил, индолил, их способу получения и применению в качестве соединений, способных к фотохимическому генерированию стабильных флуорофоров формулы II, что может быть использовано, например, в системах хранения информации, в частности, в качестве светочувствительной компоненты материала для трехмерной записи и хранения информации.

Изобретение относится к новым соединениям, а именно 5-формил-замещенным индолиновым спиробензопиранам общей формулы 1 где R1, R2 - Alk или c-Alk; R3 - СНО или NO2 группа (электронно-акцепторный заместитель), обладающие фотохромными свойствами.

Изобретение относится к способу получения 3,4-диарил(гетарил)малеимидов формулы (I) где R=C1-С4-алкил или бензил или фенил; R1=Br или арил, такой как фенил или нафтил, замещенные алкилом, алкокси-, или галогеном; гетарил, незамещенный или замещенный, такой как тиенил, бензотиенил-, фурил-, бензофурил- пирролил-, или индолил-, где заместителями являются алкил, алкокси-, алкилтио-, атом галогена или трифторметил; Ar = арил, такой как фенил или нафтил, замещенный алкилом, алкокси- или галогеном; гетарил, незамещенный или замещенный, такой как тиенил-, бензотиенил-, фурил, бензофурил- пирролил- или индолил-, где заместителями являются алкил, алкокси, алкилтио-, атом галогена или трифторметил, за исключением 3,4-ди(2,5-диметил-3-тиенил)-1-бутилмалеимида,отличающийся тем, что арил(гетарил)бороновая кислота, формулы ArB(ОН) 2 (II), где Ar имеет вышеуказанные значения, подвергают взаимодействию с N-замещенным 3,4-диброммалеимидом формулы (III) или N-замещенным 3-бром-4-арил(гетарил)малеимидом формулы (IV), где R и Ar имеют вышеуказанные значения, с использованием палладиевого катализатора в присутствии основания в среде органического растворителя, а также к ряду новых производных 3,4-диарил(гетарил)малеимидов, которые обладают фотохромными свойствами.

Изобретение относится к химии полимеров, в частности, к способу получения латексов методом водоэмульсионной сополимеризации производных N-замещенных метакриламида с другими мономерами акрилового ряда.

Изобретение относится к арилсульфамидам, в частности к 2-хлор-5-{Ы-(3,5-дикарбоксифенил )аминосульфонил анилиду(3,5- дикарбоксифенокси) 2-октадецилоксибензоилуксусной кислоты в качестве цветообразующей компоненты для синечувствительного слоя цветного фотографического материала.

Изобретение относится к способам определения формы и размеров капель микродисперсий цветных компонент и может быть использовано при изготовлении и разработке кинофотоматериалов в химикофотографической промышленности.

Изобретение относится к соединению формулы (1b) или его фармацевтически приемлемым солям, где Q представляет собой пяти-, или шести-, или семичленное гетероциклическое кольцо, содержащее 1, 2, 3 или 4 члена гетероатомного кольца, выбранных из N, О и S, где указанное гетероциклическое кольцо необязательно замещено одним, двумя или тремя заместителями, которые могут быть одинаковыми или разными и выбраны из (L)-R10, где L представляет собой связь или группу СН2 и R10 независимо выбран из водорода, фтора, хлора, брома, циано, оксо, гидрокси, OR15, NR15R16, COR15, CSR15, COOR15, COSR15, CONR15R16, CSNR15R16, SR15, SOR15, SO2R15, С1-6алкильной, С3-6циклоалкильной, С4-6циклоалкилалкильной, С4-6алкилциклоалкильной или С5-6алкилциклоалкилалкильной группы, которая необязательно замещена от одного до шести атомами фтора и в которой один или два, но не все, атомы углерода могут быть необязательно заменены гетероатомом, выбранным из О, N и S; и 5- или 6-членной арильной или гетероарильной группы, содержащей 0, 1, 2, 3 или 4 гетероатома, выбранных из О, N и S, которая необязательно замещена C1-6алкильной, С3-6циклоалкильной, С4-6циклоалкилалкильной, С4-6алкилциклоалкильной или С5-6алкилциклоалкилалкильной группой; где R15 и R16 являются одинаковыми или разными или могут быть соединены вместе с образованием кольца и каждый независимо выбран из водорода, C1-6алкильной, С3-6циклоалкильной, С4-6циклоалкилалкильной, С4-6алкилциклоалкильной или С5-6алкилциклоалкилалкильной группы, которая необязательно замещена 1-3 атомами фтора и в которой один или два, но не все, атомы углерода могут быть необязательно заменены гетероатомом, выбранным из О, N и S; или группы формулы -CH2CH2NHC(О)OCH2-фенил; или 5,7-дигидро-6H-пирроло[3,4-b]пиридин-6-ильной группы; или группы формулы (L)-R18, где L представляет собой связь или группу СН2 либо СН2СН2 и R18 представляет собой 5- или 6-членное кольцо, содержащее 0, 1, 2 или 3 гетероатома, выбранных из О, N и S, которое необязательно замещено одним или двумя атомами фтора, хлора или брома; R3 выбран из водорода, циано, гидрокси, амино и С1-9алкильной, С3-9циклоалкильной, С4-9циклоалкилалкильной, С4-9алкилциклоалкильной или С5-9алкилциклоалкилалкильной группы, в которой один атом углерода может быть необязательно заменен О; и R4 представляет собой водород или С1-6алкильную, С3-6циклоалкильную, С4-6циклоалкилалкильную, С4-6алкилциклоалкильную или С5-6алкилциклоалкилалкильную группу, которая необязательно замещена одним атомом фтора, которые представляют собой агонисты мускаринового М1 рецептора и/или М4 рецептора и которые пригодны для лечения опосредованных мускариновыми М1/М4 рецепторами заболеваний.

Изобретение относится к области органической химии, а именно к способу получения производных 5-амино-3H-пиррол-4-карбонитрилов общей формулы (1), где R1=C6H5, X=S (1a); R1=4-MeC6H4, X=O (1б); R1=C6H5, X=S (1в); R1=CH3, X=S (1г), имеющих в структуре в третьем положении 3H-пиррольного цикла карбонилсодержащий заместитель либо спиросочлененное фурановое кольцо.

Изобретение относится к соединению формулы (I), в которой R1 представляет собой н-пропил, изо-бутил, циклопропил, 3-фторфенил, 6-хлорпиридин-3-ил, 3-хлорфенил, 4-хлорфенил, 3-трифторметоксифенил, 2-(трифторметил)фенил, 3-(трифторметил)фенил, 4-(трифторметил)фенил, 2,6-дифторфенил, 2,5-дифторфенил, 3,4-дифторфенил, 3,5-дифторфенил, 3-метилфенил, 4-метилфенил, 3-метоксифенил, 4-метоксифенил, 2,3-дихлорфенил, 1-метилиндолил или 3-бромфенил; R2 представляет собой -C(O)NR3R4 или R5; значения остальных заместителей указано в формуле изобретения.

Изобретение относится к новым соединениям формулы I и формулы II или их фармацевтически приемлемым солям, обладающим свойствами ингибитора лейцин повторной киназы 2 (LRRK2 т.е."Leucine Rich Repeat Kinase").

Изобретение относится к соединению формулы (I') (где W представляет формулу -CR11R12CR13R14-; R11 представляет атом водорода, атом фтора, С1-4 алкил или фенил; R12 представляет атом водорода, атом фтора или С1-4 алкил; при условии, что R11 и R12, вместе со смежным углеродным атомом, необязательно образуют С3-8 циклоалкан или тетрагидропиран; R13 представляет атом водорода, карбамоил, С1-4 алкил (С1-4 алкил необязательно замещен одной группой, выбранной из группы, состоящей из гидрокси, C1-3 алкокси и ди-С1-3 алкиламино), галоген-С1-4 алкил, фенил, пиридил, бензил или фенэтил; R14 представляет атом водорода, C1-4 алкил или галоген-С1-4 алкил; Y представляет одинарную связь или C1-6 алкандиил (C1-6 алкандиил необязательно замещен одной гидроксигруппой, и один из углеродных атомов в C1-6 алкандииле необязательно замещен циклоалкпропан-1,1-диилом); R2 представляет атом водорода, C1-6 алкил, С3-8 циклоалкил {С3-8 циклоалкил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и выбраны из группы, состоящей из C1-6 алкила (C1-6 алкил необязательно замещен одной группой фенила), фенила (фенил необязательно замещен одним атомом галогена), C1-6 алкокси [C1-6 алкокси необязательно замещен одной группой, выбранной из группы, состоящей из С3-8 циклоалкила, фенила (фенил необязательно замещен одной группой, выбранной из группы, состоящей из атома галогена и C1-6 алкила) и пиридила (пиридил необязательно замещен одним атомом галогена)], С3-8 циклоалкокси, фенокси (фенокси необязательно замещен одной группой, выбранной из группы, состоящей из атома галогена, C1-6 алкила, С3-8 циклоалкила и галоген-C1-6 алкила) и пиридилокси (пиридилокси необязательно замещен одной группой, выбранной из группы, состоящей из атома галогена, C1-6 алкила, С3-8 циклоалкила и галоген-С1-6 алкила)}, фенил (фенил необязательно замещен одной-тремя группами, которые являются одинаковыми или различными и которые выбирают из группы α3 заместителей), нафтил, инданил, тетрагидронафтил, пиразолил [пиразолил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и выбраны из группы, состоящей из C1-6 алкила и фенила (фенил необязательно замещен одним C1-6 алкилом)], имидазолил [имидазолил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и выбраны из группы, состоящей из C1-6 алкила и фенила], изоксазолил [изоксазолил необязательно замещен одной группой фенила (фенил необязательно замещен одним атомом галогена)], оксазолил [оксазолил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и которые выбраны из группы, состоящей из C1-6 алкила и фенила], тиазолил [тиазолил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и которые выбирают из группы, состоящей из C1-6 алкила, фенила и морфолино], пиридил (пиридил необязательно замещен одной или двумя группами, которые являются одинаковыми или различными и которые выбирают из группы α5 заместителей), пиридазинил [пиридазинил необязательно замещен одной группой C1-6 алкокси (C1-6 алкокси необязательно замещен одной группой С3-8 циклоалкила)], пиримидинил [пиримидинил необязательно замещен одной группой, выбранной из группы, состоящей из галоген-С1-6 алкила, С3-8 циклоалкила, фенила и фенокси (фенокси необязательно замещен одной группой C1-6 алкила)], пиразинил [пиразинил необязательно замещен одной группой, выбранной из группы, состоящей из C1-6 алкокси (C1-6 алкокси необязательно замещен одним С3-8 циклоалкилом), и фенокси (фенокси необязательно замещен одной группой, выбранной из группы, состоящей из атома галогена, C1-6 алкила и С3-8 циклоалкила)], бензотиофенил, хинолил, метилендиоксифенил (метилендиоксифенил необязательно замещен одним или двумя атомами фтора), азетидинил (азетидинил необязательно замещен одной группой пиримидинила), пиперидинил (пиперидинил необязательно замещен одной группой, выбранной из группы, состоящей из пиримидинила, фенил-С1-3 алкила, С3-8циклоалкил-C1-3алкилкарбонила и фенил-С1-3алкоксикарбонила) или следующую формулу (I'') -CONR5CH2-R6 (I'') [где в формуле (I'') R5 представляет атом водорода или C1-3 алкил и R6 представляет фенил (фенил необязательно замещен одной группой, выбранной из группы, состоящей из атома галогена, галоген-С1-6 алкила и фенила)], Y4 представляет С1-4 алкандиил; R3 представляет атом водорода или метил; R4 представляет -СООН или -CONHOH), обладающему превосходящим ингибирующим PHD2 эффектом.

Изобретение относится к пиразол-4-ил-гетероциклил-карбоксамидным соединениям Формулы I, включая их стереоизомеры, таутомеры и фармацевтически приемлемые соли, где X представляет собой тиазолильную, пиразинильную, пиридинильную или пиримидинильную группу, R1 и R2 имеют значения, указанные в формуле изобретения.

Изобретение относится к соединениям формулы (I): где X1 представляет собой N или CR11; Х2 представляет собой N или CR13; Z представляет собой NR7R8 или CR7R8R14; каждый из R1, R5, R9 и R10 независимо представляет собой Н или C1-С6алкил, необязательно замещенный одним или несколькими заместителями, выбранными из группы, состоящей из галогена и гидроксила; каждый из R2, R3 и R4 независимо представляет собой -Q1-T1, где Q1 представляет собой связь или C1-С3алкильный линкер, необязательно замещенный галогеном, и Т1 представляет собой Н, галоген, гидроксил или RS1, где RS1 представляет собой C1-С3алкил, С3-С8циклоалкил и RS1 необязательно замещен одним или несколькими заместителями, выбранными из группы, состоящей из галогена и гидроксила; R6 представляет собой С6-С10арил или 5- или 6-членный гетероарил, содержащий 1 или 2 гетероатома, независимо выбранных из N, О и S, каждый из которых необязательно замещен одним или несколькими -Q2-T2, где Q2 представляет собой связь или C1-С3алкильный линкер, необязательно замещенный галогеном, и Т2 представляет собой Н, галоген, -NRaRb или RS2, где каждый из Ra и Rb независимо представляет собой Н или RS3, каждый из RS2 и RS3 независимо представляет собой C1-С6алкил, или 4-12-членный гетероциклоалкил, содержащий 1 или 2 гетероатома, независимо выбранных из N и О, или Ra и Rb образуют вместе с атомом N, к которому они присоединены, 4-12-членное гетероциклоалкильное кольцо, содержащее гетероатом N и дополнительно содержащее 0 или 1 дополнительный гетероатом, выбранный из N или О; R7 представляет собой -Q4-T4, где Q4 представляет собой связь или С1-С4алкильный линкер, необязательно замещенный галогеном, и Т4 представляет собой Н или RS4, где каждый RS4 представляет собой C1-С6алкил, С3-С8циклоалкил или 4-12-членный гетероциклоалкил, содержащий один гетероатом, выбранный из О или N, и каждый из RS4 необязательно замещен одним или несколькими -Q5-T5, где Q5 представляет собой связь и Т5 представляет собой Н, галоген, C1-С6алкил, амино или моно -C1-С6алкиламино; каждый из R8, R11, R12 и R13 независимо представляет собой Н, галоген, гидроксил или RS6, где RS6 представляет собой C1-С6алкил или С3-С8циклоалкил, 4-12-членный гетероциклоалкил, содержащий 1 или 2 гетероатома; или R7 и R8 образуют вместе с атомом N, к которому они присоединены, 4-11-членное гетероциклоалкильное кольцо, содержащее 0-2 дополнительных гетероатома, или R7 и R8 образуют вместе с атомом С, к которому они присоединены, 4-11-членное гетероциклоалкильное кольцо, содержащее от 1 до 3 гетероатомов; и R14 отсутствует или представляет собой Н или C1-С6алкил, необязательно замещенный галогеном, или их фармацевтически приемлемым солям.

Изобретение относится к новым соединениям в ряду индолиновых спиропиранов, а именно к 1',3',3',6-тетраметил-8-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 1 и 8-метокси-1',3',3',-триметил-6-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 2. Новые солевые производные 1,3,3-триметилспиро[хромен-2,2'-индолина] 1 и 2 проявляют фотохромные свойства в длинноволновой области спектра с λ=728 нм и λ=466 и 668 нм соответственно и имеют время жизни открытой формы 8.4 с для соединения 1 и 118.6 и 80.5 с для соединения 2.

Изобретение относится к производному азола формулы (I) или его фармацевтически приемлемой соли, где R1 представляет собой атом водорода или С1-5 алкил; R2 представляет собой атом водорода или С1-5 алкил; R3 представляет собой фенил или пиридил (где фенил или пиридил необязательно замещен одним или двумя фрагментами, выбранными из группы, состоящей из С1-5 алкокси, атомов галогена и трифторметила); каждый из R4 и R5, которые могут быть одинаковыми или различными, представляет собой атом водорода или С1-5 алкил (где С1-5 алкил необязательно замещен одним фрагментом, выбранным из группы, состоящей из гидрокси и С1-5 алкокси), или R4 и R5 вместе с соединяющим их атомом азота образуют 4-7-членный насыщенный или ненасыщенный гетероцикл, необязательно содержащий один циклический атом азота, кислорода или серы, помимо указанного выше соединяющего атома азота (где 4-7-членный насыщенный или ненасыщенный гетероцикл необязательно замещен одним или двумя фрагментами, выбранными из группы, состоящей из гидрокси, С1-5 алкила (где С1-5 алкил необязательно замещен одной или двумя гидроксильными группами), C1-5 алкокси, атомов галогена, циано, С2-5 алканоила, аминокарбонила, моно-C1-5 алкиламинокарбонила, ди-C1-5 алкиламинокарбонила, трифторметила, амино, моно-C1-5 алкиламино, ди-С1-5 алкиламино и С2-5 алканоиламино, причем в указанном 4-7-членном насыщенном или ненасыщенном гетероцикле необязательно имеется С1-5 алкиленовый фрагмент, соединяющий два различных циклических атома углерода), или образуют 2-окса-6-азаспиро[3.3]гепт-6-ил или 7-окса-2-азаспиро[3.5]нон-2-ил; азольный цикл, представленный формулой (α), имеет любую из структур формулы группы (II), приведенных в формуле изобретения, и где Ry представляет собой атом водорода или С1-5 алкил; X1 и X2 являются такими, что: (i) если X1 означает простую связь или фрагмент -СО-, X2 означает -С1-5 алкилен- или -О-С1-5 алкилен-; и (ii) если X1 означает фрагмент -CONRx1-, X2 означает простую связь; Rx1 представляет собой атом водорода или C1-5 алкил; и цикл А представляет собой бензольный цикл, пиридиновый цикл (где бензольный цикл необязательно замещен одним или двумя фрагментами, выбранными из группы, состоящей из атомов галогена и С1-5 алкокси), 5-6-членный насыщенный или частично ненасыщенный гетероцикл, содержащий один или два атома азота (где 5-6-членный насыщенный или ненасыщенный гетероцикл необязательно замещен одной оксо группой) или С3-7 циклоалкан.

Изобретение относится к новым производным фенилпиррола формулы (I) или их фармацевтически приемлемым солям, которые пригодны для предотвращения или лечения таких заболеваний, как деменция, болезнь Альцгеймера, синдром дефицита внимания и гиперактивности, шизофрения, эпилепсия, “центральная” судорога, ожирение, сахарный диабет, гиперлипидемия, нарколепсия, идиопатическая гиперсомния, индуцированный поведением синдром недостаточного сна, синдром апноэ во сне, нарушение циркадного ритма, парасомния, связанное со сном нарушение движения, инсомния и депрессия или аллергический ринит.

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное заключается во включении участков нормальных сопротивлений в наноразмерный сверхпроводник.
Наверх