Способ измерения массового расхода вещества и устройство для его реализации

Настоящее изобретение относится к способу и устройству измерения массы одного из компонентов двухкомпонентного вещества. Способ измерения массы одного из компонентов двухкомпонентного вещества, поступающей по трубопроводу сечением S за время Т, состоит в определении скорости потока вещества U в трубопроводе, в определении силы F, с которой поток контролируемого вещества воздействует на элемент сопротивления потоку в трубопроводе, и в вычислении этой массы по формуле

где Мх - масса измеряемого вещества компонента «х» за время Т, К - градуировочный коэффициент, ρх и ρу - известные плотности двух компонентов соответственно «х» и «у» контролируемого вещества. Устройство для реализации способа измерения массы одного из компонентов двухкомпонентного вещества содержит трубопровод с внутренним сечением S, по которому движется контролируемое вещество, датчик скорости (U) потока вещества, элемент сопротивления потоку, реагирующий на силу (F), с которой поток действует на этот элемент, установленный в трубопроводе по ходу потока и жестко связанный с пьезодатчиком, преобразующим значение этой силы в эквивалентный электрический сигнал, при этом сигналы от датчика скорости и от пьезодатчика поступают на входы вычислительного устройства, которое по известным значениям плотностей ρх и ρу компонентов соответственно «х» и «у» контролируемого вещества и градуировочного коэффициента К реализует вычисление массы компонента «х» Мх, поступившей по трубопроводу за время Т, по формуле

Технический результат - создание простого устройства и способа для измерения массы одного из компонентов двухкомпонентного вещества, транспортируемого по трубопроводу. 2 н.п. ф-лы, 1 ил.

 

Настоящее изобретение относится к измерению массы одного из компонентов двухкомпонентного вещества, поступающего по трубопроводу за время Т, и может использоваться для контроля продукта, извлекаемого из нефтяной скважины в нефтедобывающей промышленности.

Известны многофазные массовые расходомеры (патенты РФ №2406977, №2460973 и №2339007), использующие силы Кориолиса в колеблющихся трубках, в которых проходит поток контролируемой многофазной среды.

Недостатком указанных устройств является ограничение по содержанию газа в контролируемой многофазной среде.

Известен способ измерения массового расхода многофазного потока (патент РФ №2428662), содержащий блок измерения скорости потока, блок измерения плотности данного потока.

Недостаток данного способа заключается в дополнительном извлечении смешанной жидкости для анализа каждого компонента. Следствием этого является большое число механических операций и большие габариты устройства.

Наиболее близким, принятым за прототип, является устройство измерения массового расхода газожидкостной среды (патент РФ №2178871), содержащий датчик объемного расхода газожидкостной среды, датчик плотности смеси, вычислительные устройства (умножители, делители, вычитающие устройства, блок задания константы, ПЗУ) и индикатор.

Недостатком указанного способа является зависимость точности измерений от структуры потока и, в частности, от вида и степени присутствия газового компонента.

Другим недостатком устройства является применение в качестве плотномера радиационного датчика плотности с источником ионизирующего излучения, что требует постоянного задействования химической лаборатории. Кроме того, такое устройство сложное и стоимость его очень высока, что не позволяет устанавливать такие приборы на каждой скважине.

Задачей настоящего изобретения является создание простого устройства для измерения массы одного из компонентов двухкомпонентного вещества, транспортируемого по трубопроводу.

На фигуре представлено предлагаемое устройство, где:

1. Трубопровод с потоком контролируемого вещества.

2. Датчик скорости потока.

3. Элемент сопротивления потоку.

4. Пъезодатчик.

5. Вычислительное устройство.

6. Индикатор.

Предлагаемый способ и устройство для измерения массы вещества работает следующим образом.

Поток контролируемого вещества в трубопроводе 1 воздействует на датчик скорости потока 2, например, турбинный расходомер. Выходной сигнал с датчика скорости потока 2, пропорциональный скорости потока U, поступает на первый вход вычислительного устройства 5. Далее поток по трубопроводу воздействует на элемент сопротивления потоку 3, который жестко связан с пъезодатчиком 4. Под действием потока элемент сопротивления потоку 3 заставляет деформироваться пъезодатчик 4, сигнал с которого поступает на второй вход вычислительного устройства 5.

Таким образом, из-за действия силы F на элемент сопротивления 3, а в конечном счете и на пъезодатчик 4, с последнего будет поступать сигнал F=к ма=kmU/Δt,

где к - коэффициент, который определяется конструктивными параметрами элемента сопротивления 3 и пъезодатчика 4;

м - часть массы вещества потока, которая воздействует на элемент сопротивления 3 за промежуток времени Δt;

а - ускорение;

U - скорость потока.

Пользуясь последней формулой, определим общую массу М вещества, проходящего по всему поперечному сечению S трубопровода за время Т:

где К - градуировочный коэффициент устройства, который определяется при его аттестации на расходомерном стенде.

Для случая, когда измеряется двухкомпонентное вещество с плотностями ρх и ρy компонентов «х» и «у», запишем массу этого вещества в виде:

М=ρхVxyVy,

Здесь Vx и Vy - объемы компонентов «х» и «у» в общем объеме V=Vx+Vy. Для определения, например, Vx с учетом последнего выражения запишем

М=ρxVxyVxyV,

откуда Vx=М/(ρху)-ρуV/(ρху),

учитывая, что V=USΔt и М=(KF/U)Δt, объем компонента «х», поступивший по трубопроводу за время Т определится как

а масса компонента « х », поступившая по трубопроводу за время Т, выразится в виде

Таким образом, зная плотности компонентов (ρх и ρу) двухкомпонентного вещества, значение градуировочного коэффициента К и величину поперечного сечения трубопровода S, по сигналам отдатчика скорости (U) потока в трубопроводе и от пъезодатчика (F), вычислительное устройство 5 по формуле (2) определяет массу вещества компонента «х», поступившую по трубопроводу за время Т. Значение этой массы вещества поступает на индикатор 6.

Таким образом, предлагаемое изобретение по формуле 2 позволяет определять:

- массу одного из компонентов двухкомпонентного вещества, поступившую по трубопроводу за время Т, если известны плотности каждого из компонентов.

Предлагаемое изобретение может найти широкое применение в самых различных отраслях промышленности, где необходимо контролировать массу или объем одного из компонентов двухкомпонентных веществ, плотности которых известны, не измеряемых или трудно измеряемых продуктов существующими средствами. Например, продукт, извлекаемый из нефтяной скважины, в общем случае состоит из газа, воды и нефти. В связи с тем, что плотность газа на три порядка меньше плотности жидкости, то данный продукт с точки зрения его массы можно рассматривать как двухкомпонентное вещество, состоящее из воды и нефти. Зная плотности воды и нефти в скважинной жидкости, можно оперативно контролировать добычу нефти из данной скважины, а это значит оперативно контролировать эффективность работы скважины, что в настоящее время является проблемой в нефтедобыче.

Другие примеры применения предлагаемого технического решения - это различные водные примеси с твердыми веществами, такие как смесь воды и извести (известковое молоко), цементные водные растворы, глиняные водные смеси, а также множество других двухкомпонентных веществ, таких как смесь «газ + жидкость», «газ + твердое вещество», используемых в промышленности, где необходимо контролировать расход одного из компонентов двухкомпонентных веществ.

1. Способ измерения массы одного из компонентов двухкомпонентного вещества, поступающей по трубопроводу сечением S за время Т, состоящий в определении скорости потока вещества U в трубопроводе, в определении силы F, с которой поток контролируемого вещества воздействует на элемент сопротивления потоку в трубопроводе, и в вычислении этой массы по формуле

где Мх - масса измеряемого вещества компонента «х» за время Т,

К - градуировочный коэффициент,

ρх и ρу - известные плотности двух компонентов соответственно «х» и «у» контролируемого вещества.

2. Устройство для реализации способа измерения массы одного из компонентов двухкомпонентного вещества по п. 1, содержащее трубопровод с внутренним сечением S, по которому движется контролируемое вещество, датчик скорости (U) потока вещества, элемент сопротивления потоку, реагирующий на силу (F), с которой поток действует на этот элемент, установленный в трубопроводе по ходу потока и жестко связанный с пьезодатчиком, преобразующим значение этой силы в эквивалентный электрический сигнал, при этом сигналы от датчика скорости и от пьезодатчика поступают на входы вычислительного устройства, которое по известным значениям плотностей ρх и ρу компонентов соответственно «х» и «у» контролируемого вещества и градуировочного коэффициента К реализует вычисление массы компонента «х» Мх, поступившей по трубопроводу за время Т, по формуле



 

Похожие патенты:

Изобретение относится к измерительной технике, а также к системам управления технологическими процессами и может быть использовано для изменения относительного объемного содержания воды (влагосодержания) и отбора проб в нефтегазоводной смеси из нефтяной скважины, а также в измерительных системах, технологических установках и других устройствах, измеряющих расход и количество нефти с растворенным газом и свободного газа в продукции нефтяной скважины.

Изобретение относится к способу определения коэффициента расхода предохранительных клапанов. Заявленный способ основан на постоянстве коэффициента расхода арматуры.

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора, заключается в том, что измеряют температуру подъемника и определяют скорость циркуляции мелкодисперсного катализатора по предварительно определенной зависимости между указанной скоростью и температурой подъемника.

Изобретение относится к системам заправки летательных аппаратов на стоянке. Система дозирования жидкой присадки в перекачиваемое по трубопроводу топливо заданной плотности и заданного количества содержит расходный бак (5) с присадкой.

Изобретение относится к области измерительной техники и предназначено для измерения параметров газожидкостной смеси, добываемой из нефтяных скважин. Заявленное устройство содержит измерительную колонку с вертикальной ветвью, снабженной первым датчиком разности давления и датчиками абсолютного давления и температуры измеряемой жидкости, и ветвь измерительной колонки, содержащую участок калиброванного трубопровода длиной L1 меньшего диаметра D1 и участок калиброванного трубопровода длиной L2 с резким расширением его диаметра D2 в выходном патрубке, снабженный вторым датчиком разности давления.

Изобретение относится к области измерительной техники и может быть использовано для измерения ряда параметров жидких сред в потоке трубопровода. Заявленное устройство содержит измерительную колонку, выполненную в виде двух коаксиальных, установленных с кольцевым зазором вертикальных труб - с внешней трубой и внутренней трубой, датчик разности давления, установленный в верхней части измерительной колонки, два датчика разности давления, установленные в нижней части измерительной колонки, датчик давления и датчик температуры измеряемой жидкости, импульсные трубки с «эталонной» жидкостью, а также регистрирующий блок.

Изобретение относится к области измерительной техники и может быть использовано для автоматического обнаружения концентрации технологического материала. Предложено устройство и способ для того, чтобы автоматически переключать матрицы в измерителе для определения концентрации продукта неизвестного материала, который может представлять собой очищающий материал или применяемый материал.

Изобретение относится к системе (200) датчика расхода. Система (200) датчика расхода включает в себя измеритель (202) плотности или удельной массы, включающий в себя сборку датчика (204a) и измерительную электронику (204b) измерителя плотности или удельной массы, сконфигурированную для получения измерения плотности или удельной массы технологического флюида.

Изобретение относится к системе (200) датчика массового расхода потока. Система (200) датчика массового расхода потока включает в себя измеритель (202) плотности, включающий в себя блок (204а) датчика и электронику (204b) измерителя плотности, выполненную с возможностью формировать измерения плотности технологической жидкости.

Изобретение относится к области теплотехнических измерений и учета количества и баланса природного газа и может быть использовано при измерениях количества и составлении фактического баланса природного газа в условиях поставки, транспорта и потребления в системе газораспределительной сети региона.

Изобретение относится к двигателям внутреннего сгорания, в частности к определению характеристик периода смешанного расходования топлива. Техническим результатом является повышение эффективности установления характеристик периода смешанного расходования топлива.

Изобретение относится к способу определения достоверности измерения вибрационного расходомера и электронному измерителю для расходомера. Способ содержит следующие этапы, на которых: помещают технологический флюид в вибрационный измеритель; измеряют количество вовлеченного газа в технологическом флюиде, причем количество вовлеченного газа определяется объемом газа; и определяют уровень достоверности измерения по меньшей мере одного рабочего параметра потока на основании количества вовлеченного газа в технологическом флюиде и интервала времени между регистрациями состояний флюида.

Изобретение относится к технической физике, а именно к области определения отношения усредненных скоростей фаз и отношения динамического разрежения в контролируемой точке поперечного сечения потока влажного пара к усредненному значению этого параметра по сечению потока при известных значениях массового расхода и степени сухости, например, в паропроводе от парогенератора.

Изобретение относится к измерительной технике и может быть использовано в информационно-измерительных системах нефтедобывающей, нефтеперерабатывающей, химической и других отраслях промышленности для измерения содержания компонентов многофазной среды.

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе.

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей.

Изобретение относится к измерительной технике, а также к системам управления технологическими процессами и может быть использовано для изменения относительного объемного содержания воды (влагосодержания) и отбора проб в нефтегазоводной смеси из нефтяной скважины, а также в измерительных системах, технологических установках и других устройствах, измеряющих расход и количество нефти с растворенным газом и свободного газа в продукции нефтяной скважины.

В настоящем документе описаны многофазные расходомеры и связанные с ними способы. Устройство для измерения расхода содержит: впускной манифольд; выпускной манифольд; первый и второй каналы для потока, присоединенные между впускным и выпускным манифольдами; и анализатор для определения расхода текучей среды, протекающей через первый и второй каналы для потока, на основании параметра текучей среды, протекающей через первый канал для потока, причем параметр представляет собой перепад давления текучей среды, протекающей через первый канал для потока или плотность смеси текучей среды, протекающей через первый канал для потока, источник и детектор, соединенные с первым каналом для потока, причем анализатор использует полученные детектором значения для определения фазовой фракции текучей среды, протекающей через первый канал для потока, клапан для управления расходом текучей среды через второй канал для потока.

Изобретение предназначено для определения в скважинных условиях содержания свободного газа в потоке скважинной продукции на приеме глубинного насоса. Техническим результатом является обеспечение защиты ЭЦН и его работы в оптимальном режиме в системе «пласт-скважина-насос».

Настоящее изобретение в целом относится к способу и устройству для измерений на основе магнитного резонанса и анализа режимов многофазного потока в транспортной или эксплуатационной трубе.

Изобретение относится к измерительной технике и может быть применено в вихревых расходомерах для измерения объемного расхода с использованием вихрей Кармана. Вихревой расходомер содержит проточную часть и тело обтекания, установленное в проточной части поперек диаметра.
Наверх