Способ штамповки изделий из высокопрочного чугуна

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке изделий из высокопрочного чугуна. Заготовку нагревают до температуры Т1 и деформируют в штампе. Производят монотонное охлаждение заготовки с температуры T1 до температуры Т2 в процессе пластической деформации и с температуры Т2 до температуры Т3 по завершении пластической деформации с сохранением давления в штампе ниже предела текучести высокопрочного чугуна. Затем при сохранении указанного давления осуществляют непрерывное охлаждение заготовки до температуры Т4 со скоростью Vo и далее до температуры Т5. При этом соблюдают следующие условия: 950°C<Т1<TC; 950°С≤Т2<TC; ТАп≤Т3<950°C; Vo>Vкр; Т4≤ТМн; Т5≤ТМк, где TС - температура солидус высокопрочного чугуна; ТАп - температура начала аустенитно-перлитных превращений в высокопрочном чугуне; Vкр - критическая скорость охлаждения - минимальная скорость, при которой происходит бездиффузионное превращение аустенита в мартенсит; ТМн - температура начала фазовых превращений аустенита в мартенсит в высокопрочном чугуне; ТМк - температура конца фазовых превращений аустенита в мартенсит в высокопрочном чугуне. В результате обеспечивается расширение технологических возможностей способа. 1 з.п. ф-лы, 2 ил., 2 табл., 1 пр.

 

Изобретение относится к машиностроению, в частности, к области обработки металлов давлением и может быть использовано при штамповке изделий из высокопрочного чугуна.

В машиностроении одной из главных проблем является повышение качества и эксплуатационных свойств изделий при уменьшении затрат на их изготовление. В частности, актуальна задача коренного улучшения качества изделий из чугуна. Чугуны используются для изготовления гильз двигателей внутреннего сгорания и компрессоров, пальцев траков гусеничных машин, шестерен, распределительных и коленчатых валов, зубчатых колес и других изделий. Традиционно эти изделия изготавливаются методами литья с последующей механической обработкой.

Одним из способов повышения прочностных и пластических свойств чугунных изделий является отливка их из чугуна с шаровидным графитом - высокопрочного чугуна, объем производства отливок из которого с каждым годом возрастает. Этот материал, по сравнению с углеродистой сталью или серым чугуном, обладает рядом преимуществ. Высокопрочный чугун характеризуется лучшими литейными свойствами, более плотной структурой, обладает высоким сопротивлением износу. Для него характерны: высокая теплостойкость, хладостойкость, коррозионная стойкость, он может подвергаться сварке и автогенной резке.

Однако в процессе литья изделий образуется большое количество брака по характерным литейным дефектам, которые частично можно устранить методами обработки металлов давлением. Поэтому деформирование литых заготовок из чугуна открывает весьма широкие перспективы повышения надежности и долговечности деталей машин и механизмов.

Поиск показал, что в настоящее время, помимо ряда исследовательских работ преимущественно теоретического характера, отсутствует положительный практический опыт изготовления штамповкой деталей из высокопрочного чугуна с получением стабильных гарантированных показателей штампованных изделий.

Начиная с 30-х годов прошлого века были опробованы различные способы деформирования чугуна и установлено, что этот процесс обладает определенной спецификой и существенно изменяет структуру и свойства литых заготовок.

К числу немногих известных, принятому за прототип, относится способ изготовления изделий (типа шестерня) из высокопрочного чугуна, согласно которому металл заливают в форму и охлаждают в интервале температур эвтектического затвердевания со скоростью 6-10°C/с, отливку извлекают из формы, нагревают до 950±50°C и штампуют в закрытом штампе со степенью деформации 70-90% поверхности и не более 10% внутренней части изделия (Авторское свидетельство СССР №1731836 А1, опубл. 07.05.1992).

К недостаткам известного способа следует отнести сложность его реализации и низкие технологические возможности, обусловленные, во первых, обязательностью комбинирования операции штамповки с оригинальной операцией литья, т.е. способ в большей степени можно отнести к комбинированной технологии, нежели к технологическому переходу, в частности - штамповки, а во вторых, обязательные ограничения по степени деформации существенно ограничивают номенклатуру изготавливаемых изделий.

Задачей изобретения является создание способа штамповки изделий из высокопрочного чугуна с получением стабильных гарантированных физических и эксплуатационных показателей.

Технический результат - повышение технологических возможностей за счет исключения ограничений по степени деформации получаемого изделия.

Поставленная задача решается, а заявленный технический результат достигается тем, что в способе штамповки изделий из высокопрочного чугуна, включающем нагрев заготовки и ее пластическую деформацию в закрытом штампе, нагрев заготовки осуществляют до температуры Т1, деформацию заготовки в штампе с приданием ей формы изделия сопровождают ее монотонным охлаждением с температуры Т1 до температуры Т2 в процессе пластической деформации и с температуры Т2 до температуры Т3 по завершении пластической деформации с сохранением давления в штампе ниже предела текучести высокопрочного чугуна, далее при сохранении давления в штампе ниже предела текучести высокопрочного чугуна осуществляют непрерывное охлаждение заготовки до температуры Т4 со скоростью Vo и далее до температуры Т5, при этом соблюдают следующие условия: 950°C<Т1<TC; 950°С≤Т2<TC; ТАп≤Т3<950°C; Vo>Vкр; Т4≤ТМн; Т5≤ТМк, где TC - температура солидус высокопрочного чугуна; ТАп - температура начала аустенитно-перлитных превращений в высокопрочном чугуне; Vкр - критическая скорость охлаждения - минимальная скорость, при которой происходит бездиффузионное превращение аустенита в мартенсит; ТМн - температура начала фазовых превращений аустенита в мартенсит в высокопрочном чугуне; ТМк - температура конца фазовых превращений аустенита в мартенсит в высокопрочном чугуне, предпочтительно устанавливать Т1=1147°C, Т2=950°C, Т3=727°C, Т4=250°C, Т5=20°C, Vo=80°C/с.

Изобретение поясняется чертежами:

Фиг. 1 - диаграмма фазовых превращений высокопрочного чугуна в процессе реализации заявленного способа;

Фиг. 2 - изделие «переходник конический».

Обозначения, приведенные на изображениях, имеют следующий смысл:

ГШ - температурный интервал горячей штамповки высокопрочного чугуна;

А1 - соответствует температуре ТАп начала аустенитно-перлитных превращений в высокопрочном чугуне;

Ап - аустенит переохлажденный;

Мн - соответствует температуре ТМн начала фазовых превращений аустенита переохлажденного в мартенсит в высокопрочном чугуне;

Мк - соответствует температуре ТМк конца фазовых превращений аустенита переохлажденного в мартенсит в высокопрочном чугуне;

М - мартенсит;

Аост - аустенит остаточный

Изобретение основано на следующем.

Экспериментально установлено, что высокопрочный чугун (в определении и номенклатуре действующего в РФ на момент подачи заявки ГОСТ 7293-85. Чугун с шаровидным графитом для отливок. Марки) обладает пластичностью, достаточной для его пластической деформации в изделие с сохранением сплошности материала и его физико-механических характеристик у изделия не хуже, чем в литом изделии, в интервале температур горячей штамповки (ГШ) от 950°C до температуры солидус Тс=1147°С. При этом, как показывают эксперименты, попытки штамповки выше температуры солидус приводят к разрушению заготовки и/или ее элементов ввиду собирательной рекристаллизации и/или оплавления по границам зерен. При температуре ниже 950°C резко увеличивается сопротивление деформированию высокопрочного чугуна с одновременным снижением пластичности, что приводит к появлению трещин и иного рода разрушений в изделии. Несмотря на небольшой температурный перепад, который составляет всего 197°C, его следует строго выдерживать при штамповке высокопрочного чугуна для исключения возможности получения бракованных изделий.

Процесс охлаждения отштампованного из высокопрочного чугуна изделия сопровождается следующими фазовыми превращениями. При охлаждении высокопрочного чугуна до температуры выше ТАп аустенит в его структуре является стабильным и его превращения в этих условиях протекать не могут. Для перехода аустенита в метастабильное состояние переохлажденного аустенита Ап требуется температура ниже точки А1, при этом он превращается в более стабильные ферритно-цементитные структуры. Левая кривая на Фиг. 1 соответствует началу превращения аустенита переохлажденного Ап в феррит + цементит. Правая кривая соответствует концу превращения аустенита переохлажденного Ап в феррит + цементит. Влияние скорости охлаждения на степень переохлаждения аустенита (температуру распада) относительно равновесной температуры ТАп показана на диаграмме (Фиг. 1). С увеличением скорости охлаждения понижается температура распада аустенита и тем мельче зерна образующейся ферритно-цементитной структуры. При низкой скорости охлаждения V1 переохлажденный аустенит Ап переходит в перлит, при увеличении скорости V2 образуется сорбит, при еще большей скорости V3 - троостит. Бейнит при непрерывном охлаждении аустенита обычно не образуется. При охлаждении со скоростью V0, превышающей критическую скорость Vкр аустенит переохлаждается до температуры ТМн, соответствующей точке Мн, и переходит в мартенсит. Однако не весь аустенит переходит в мартенсит, поэтому в структуре присутствует остаточный аустенит Аост. Значение критической скорости охлаждения зависит от устойчивости аустенита, определяющейся химическим составом высокопрочного чугуна.

В качестве иллюстрации заявленного способа рассмотрим следующий пример. Штамповке подвергались заготовки, изготовленные из центробежно-литых труб, из чугуна марки ВЧ-40, химический состав которого представлен в табл. 1, а механические характеристики в табл. 2.

Технологический процесс обжима из центробежно-литых труб коническим инструментом «переходника конического» с условным диаметром проходного сечения Dy=100 мм включает: отрезку мерной трубной заготовки с толщиной стенки 6 мм, внешним диаметром 119,8 мм и длиной 100 мм; предварительный нагрев заготовки до 1147°C (нагрев до 1146,(9)°C был бы предпочтительнее, однако с учетом характерной измерительной/установочной ориентировочно полупроцентной погрешности следует считать оптимальной Т1=1140°C); обжим заготовки в конической матрице с углом α=17°34' до внешнего диаметра 56,46 мм, с калибровочным размером Lкал=5 мм. Поскольку обжим коническим инструментом сопровождается благоприятным для высокопрочного чугуна напряженным состоянием со схемой всестороннего неравномерного сжатия при соблюдении упомянутых температурно-скоростных условий, то при коэффициенте обжима в этом примере Кобж=2,12 разрушения элементов заготовки не происходило, несмотря на высокую степень деформации ε=78% по всей толщине стенки. При этом температурно-скоростные условия охлаждения изделия как в процессе формоизменения при обжиме, так и после него, полностью соответствовали заявленному способу: 950°C<Т1<TC; 950°С≤Т2<TC; ТАп≤Т3<950°C; Vo>Vкр; Т4≤ТМн; Т5≤ТМк. Отштампованное изделие «переходник конический» представлено на Фиг. 2.

В рассмотренном примере скоростное условие охлаждения в штампе выполняется Vо>Vкр, т.к. тонкостенное изделие контактирует с массивными деталями штампа, температура которых относительно невелика Тшт=150°С, при этом температурный напор составляет ΔТ=1147-150=997°С. С учетом наружной и внутренней площадей контакта изделия с формоизменяющими деталями штампа и действующего в процессе охлаждения давления скорость охлаждения составляет Vo=80°C/с.

Таким образом, температурно-скоростные режимы, описанные в изобретении необходимо жестко выдерживать, которые изменяются на разных этапах реализуемой технологии и сопровождаются структурными превращениями. На этапе формоизменения в условиях горячей штамповки деформируется аустенитная структура, имеющая достаточно высокий показатель пластичности, поэтому на этом этапе разрушения заготовки не происходит. Далее при постоянном давлении и непрерывном охлаждении аустенит переохлажденный превращается в мартенсит, что сопровождается, с одной стороны, релаксацией остаточных напряжений в высокопрочном чугуне с повышением его пластических свойств, а с другой стороны, увеличением прочностных характеристик, т.к. мартенсит обладает повышенной прочностью. В совокупности это определяет хорошую штампуемость с приданием заготовке необходимой формы, а по завершении перехода аустенита переохлажденного в мартенсит изделие из высокопрочного чугуна приобретает высокое прочностные свойства, что также препятствует зарождению микротрещин, несмотря на высокую интенсивность накопленной деформации в процессе обработки давлением.

Исходя из вышесказанного, можно сделать вывод о том, что при реализации изобретения поставленная задача - создание способа штамповки изделий из высокопрочного чугуна с получением стабильных гарантированных физических и эксплуатационных показателей - решена, а заявленный технический результат - повышение технологических возможностей за счет исключения ограничений по степени деформации получаемого изделия - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле изобретения признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности необходимых признаков, неизвестной на дату приоритета из уровня техники и достаточной для получения требуемого технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к машиностроению, в частности, к области обработки металлов давлением и может быть использовано при штамповке изделий из высокопрочного чугуна;

- для заявленного объекта в том виде, как он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует критериям патентоспособности «новизна» и «промышленная применимость» по действующему законодательству.

1. Способ штамповки изделий из высокопрочного чугуна, включающий нагрев заготовки и ее пластическую деформацию в закрытом штампе с приданием формы изделия, отличающийся тем, что нагрев заготовки осуществляют до температуры Т1, при этом осуществляют непрерывное охлаждение заготовки с температуры T1 до температуры Т2 в процессе ее пластической деформации с приданием формы изделия и с температуры Т2 до температуры Т3 по завершении процесса пластической деформации с сохранением давления в закрытом штампе ниже предела текучести высокопрочного чугуна, после чего при сохранении давления в штампе ниже предела текучести высокопрочного чугуна осуществляют непрерывное охлаждение заготовки до температуры Т4 со скоростью Vo и далее до температуры Т5, при этом соблюдают следующие условия:

950°C<Т1<TC;

950°C<Т2<TC;

ТАп≤Т3<950°C;

Vo>Vкр;

Т4≤ТМн;

Т5≤ТМк,

где TC - температура солидус высокопрочного чугуна;

ТАп - температура начала аустенитно-перлитных превращений в высокопрочном чугуне;

Vкp - критическая скорость охлаждения, соответствующая минимальной скорости, при которой происходит бездиффузионное превращение аустенита в мартенсит;

ТМн - температура начала фазовых превращений аустенита в мартенсит в высокопрочном чугуне;

ТМк - температура конца фазовых превращений аустенита в мартенсит в высокопрочном чугуне.

2. Способ штамповки по п. 1, отличающийся тем, что Т1=1147°C, Т2=950°C, Т3=727°C, Т4=250°C, Т5=20°C, Vo=80°C/с.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к технологии получения заготовок из высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, используемых при изготовлении силовых элементов кузова автомобиля.

Изобретение относится к области металлургии. Для повышения прочности и пластичности с сохранением допустимых значений показателя пластичности аустенитную сталь с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающей TWIP-эффектом подвергают предварительному гомогенизационному отжигу при температуре 1223 – 1423 K в течение 1 ч, последующей горячей ковке при температуре 1223 – 1423 K до суммарной истинной степени деформации в диапазоне 1 - 1,19, затем второму гомогенизационному отжигу при температуре 1223 – 1423 K в течение не менее двух часов, последующей горячей прокатке без промежуточного подогрева при температуре 773 – 1423 K до суммарной истинной деформации в диапазоне 1,6 – 1,99, отжигу в течение в течение 1 ч при 1223-1423 K.

Изобретение относится к области металлургии, а именно к способу обработки заготовки из аустенитного сплава, обеспечивающей подавление выделения сигма-фазы. Способ включает по меньшей мере один этап обработки, выбираемый из группы, состоящей из термомеханической обработки заготовки и охлаждения заготовки.

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%.

Изобретение относится к металлургии. Стальной лист следующего химического состава, мас.

Изобретение относится к области металлургии. Для повышения механических характеристик стального изделия способ включает стадии: получения нагретого стального исходного изделия при температуре от 380 до 700°С, обладающего метастабильной аустенитной структурой и содержащего, в мас.%: 0,15 ≤ С ≤ 0,40, 1,5 ≤ Mn ≤ 4,0, 0,5 ≤ Si ≤ 2,5, 0,005 ≤ Al ≤ 1,5, при этом 0,8 ≤ Si + Al ≤ 2,5, S ≤ 0,05, P ≤ 0,1 по меньшей мере один элемент из: Cr и Мо: 0 ≤ Cr ≤ 4,0, 0 ≤ Mo ≤ 0,5 и 2,7 ≤ Mn + Cr + 3 Mo ≤ 5,7, и необязательно один или несколько элементов из: Nb ≤ 0,1, Ti ≤ 0,1, Ni ≤ 3,0, 0,0005 ≤ B ≤ 0,005, 0,0005 ≤ Ca ≤ 0,005, остальное- железо и неизбежные примеси, проведения стадии горячего формования при температуре от 700 до 380°С, с суммарной деформацией εb от 0,1 до 0,7 по меньшей мере в одном местоположении нагретого стального исходного изделия для получения полностью аустенитной структуры горячеформованного стального изделия, после этого закаливания горячеформованного стального изделия путем охлаждения при скорости охлаждения VR2, превосходящей критическую мартенситную скорость охлаждения, до температуры QT, меньшей Ms, для получения структуры, содержащей от 40 до 90% мартенсита, остальное аустенит, после этого сохранения продукции при температуре выдерживания РТ в диапазоне от QT до 470°С или повторного нагрева изделия до упомянутой температуры и выдерживания при температуре РТ в течение периода времени Pt от 5 сек до 600 сек.

Изобретение относится к области металлургии, а именно к термомеханической обработке жаропрочной хромистой стали мартенситного класса, применяемой для изготовления элементов котлов и паропроводов, а также паровых турбин энергетических установок с рабочей температурой пара до 650°С.

Изобретение относится к области металлургии, а именно к высокопрочному стальному материалу, используемому для изготовления труб нефтяных и газовых скважин. Материал имеет следующий химический состав, мас.%: C: от 0,30 до 1,0, Si: от 0,05 до 1,0, Mn: от 16,0 до 35,0, P: 0,030 или меньше, S: 0,030 или меньше, Al: от 0,003 до 0,06, N: 0,1 или меньше, V: от 0 до 3,0, Ti: от 0 до 1,5, Nb: от 0 до 1,5, Cr: от 0 до 5,0, Mo: от 0 до 3,0, Cu: от 0 до 1,0, Ni: от 0 до 1,0, B: от 0 до 0,02, Zr: от 0 до 0,5, Ta: от 0 до 0,5, Ca: от 0 до 0,005, Mg: от 0 до 0,005, остальное - Fe и примеси.

Изобретение относится к листу из электротехнической стали с изолирующим покрытием, превосходным по прошиваемости и стойкости к пылению, при этом в изолирующем покрытии не содержится какого-либо соединения хрома.

Изобретение относится к изготовлению закаленных деталей из листовой стали с нанесенным покрытием на основе алюминия. Способ включает получение листовой стали с предварительно нанесенным металлическим покрытием, содержащим от 4,0 до 20,0 мас.% цинка, от 1,0 до 3,5 мас.% кремния, необязательно от 1,0 до 4,0 мас.% магния и необязательно дополнительные элементы, выбранные из Pb, Ni, Zr или Hf, и остальное - алюминий и неизбежные примеси, причем соотношение Zn/Si находится в диапазоне от 3,2 до 8,0, получение заготовки, ее термическую обработку при температуре в диапазоне от 840 до 950°С для получения в стали полностью аустенитной микроструктуры, горячую формовку заготовки для получения детали, охлаждение детали с получением в стали микроструктуры, являющейся мартенситной или мартенситно-бейнитной или образованной из по меньшей мере 75% равноосного феррита, от 5 до 20% мартенсита и бейнита в количестве, меньшем или равном 10%, и фосфатирование.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении кольцевого изделия. На этапе первой ковки образуют первое кованое изделие, имеющее дно в форме диска и периферийную стенку, которая наклонена к направлению от центра дна к ее наружной периферии.

Изобретение относится к термомеханической обработке заготовок из немагнитного сплава. Заготовку нагревают до температуры теплой обработки давлением, которая находится в диапазоне от температуры, составляющей одну треть от температуры начала плавления немагнитного сплава, до температуры, составляющей две трети от указанной температуры плавления.

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке поковок с ребрами. Штамп содержит верхнюю и нижнюю половины с предварительным и окончательным ручьями.

Изобретение относится к обработке заготовок ковкой, в частности к прокладкам, которые располагают между штампом и заготовкой. Прокладка содержит три слоя.

Изобретение относится к обработке заготовок для измельчения микроструктуры. Производят ковку нагретой заготовки на прессе в открытом штампе в первом направлении ковки до предела пластичности материала заготовки.

Изобретение относится к обработке металлов давлением и может быть использовано при получении изделий в многопозиционной штамповочной машине последовательного действия.
Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей из легких сплавов. Заготовку, полученную литьем, перемещают в туннельную печь.

Изобретение относится к области горячей штамповки и может быть использовано в машиностроении при изготовлении осесимметричных изделий типа диска, крышки, днища. Нагретую до ковочной температуры цилиндрическую заготовку размещают в матрице с вогнутой рабочей поверхностью и осуществляют предварительное формообразование изделия.

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении штампованных поковок повышенной геометрической точности. Получение поковок осуществляют в температурных режимах, соответствующих полугорячей и горячей объемной штамповке.
Наверх