Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата



Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата
Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата

Владельцы патента RU 2695516:

Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (RU)

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА). Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата (ЛА) содержит каркас, нагревательные элементы, токоподводящие шины. Каркас выполнен в виде цилиндра с независимыми, изолированными друг от друга секциями, имитирующими зоны прогрева отсека ЛА, на внешней поверхности которого установлены отражающие экраны, а в верхней его части установлена крышка. Нагревательные элементы представляют собой лампы, цоколи которых выполнены в виде гармошки. Крышка гладко отполирована с внутренней стороны и представляет собой диск цилиндрической формы. Технический результат - повышение точности и достоверности результатов тепловых испытаний ЛА любой конфигурации, при этом уменьшив температуру отсека ЛА во время испытания без применения дополнительных охлаждающих средств. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА).

На сегодняшний день известно множество методов и способов для тепловых испытаний отсеков ЛА. Одним из таких является нагрев радиационным способом. При этом нагреватель состоит из каркаса с несколькими зонами нагрева, обеспечивающие необходимое распределение температурного поля по высоте испытываемого отсека (Статистические испытания на прочность сверхзвуковых самолетов. /А.Н. Баранов [и др.]. М.Машиностроение, 1974, 344 с). Однако, данная установка имеет ряд существенных недостатков: наличие погрешности измерения температурного поля и низкий КПД вследствие больших потерь тепла излучением и конвекцией в окружающую среду.

Известен нагреватель для стенда испытаний на прочность (RU 2548617 C1, дата публикации 20.04.2015), содержащий каркас, нагревательные элементы, токоподводящие шины, в котором нагрев осуществляется засчет подводимого тока, при этом требуется контакт с наружной поверхностью отсека. Однако, нагрев испытываемого отсека ограничен температурой плавления материала из-за непосредственно контакта нагревателя с отсеком. Также данный нагреватель проектируется под конкретный отсек испытаний, что исключает его применение для отсеков различной конфигурации.

Наиболее близким по технической сущности является нагреватель, описанный в «Способе теплового нагружения обтекателей ракет из неметаллических материалов» (RU 2456568 С1) содержащий каркас, нагревательные элементы, токоподводящие шины, в котором нагрев осуществляется за счет подводимого тока. Недостатком данного устройства является разнотолщинность каркаса. Каркас, обеспечивающий непосредственный контакт поверхностного нагревательного элемента с испытываемым отсеком, разбитый на секторы, в верхней части прилегает к носовой части отсека и выполнен с большей толщиной, из-за которой увеличивается инерционность данного участка нагревателя.

Проанализировав вышеуказанные разработки, а также методы и способы тепловых испытаний, используемых для ЛА, был спроектирован данный нагреватель.

Техническим результатом заявляемого изобретения является повышение точности и достоверности результатов тепловых испытаний отсеков ЛА любой конфигурации.

Указанный технический результат достигается тем, что нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата (ЛА), содержит каркас, нагревательные элементы, токоподводящие шины, при этом каркас выполнен в виде цилиндра с независимыми, изолированными друг от друга секциями, создающими зоны прогрева отсека ЛА, на внешней поверхности которого установлены отражающие экраны, а в верхней его части установлена крышка.

Для уменьшения величины погрешности задания температурного поля расстояние от отсека до излучающей поверхности нагревателя устанавливается таким образом, чтобы избежать неравномерности поля излучения вследствие дискретности расположения ламп, а также избежать уменьшения плотности потока излучения не более 10%, при этом нагреватель выполнен в виде цилиндра для расширения номенклатуры испытываемых отсеков.

В качестве нагревательных элементов могут быть использованы лампы. В частном варианте реализации предлагаемого технического решения используют лампы, цоколи которых выполнены в виде гармошки.

Отражающие экраны представляют собой сегменты цилиндрической формы, которые могут быть гладко отполированы с внутренней стороны.

Крышка представляет собой диск цилиндрической формы, при этом крышка может быть гладко отполирована с внутренней стороны.

Предлагаемое техническое решение показано на чертежах.

На прилагаемых к описанию чертежах представлено следующее.

Фигура 1 - нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата;

Фигура 2 - лампа.

На представленных фигурах показаны следующие элементы:

1 - каркас,

2 - кольцевые токоподводящие шины,

3 - нагревательные элементы - лампы,

4 - цоколи ламп,

5 - отражающие экраны,

6 - цилиндрическая крышка,

7 - «лапы»,

8 - рым-болты.

Сущность изобретения: нагреватель для внешней поверхности отсека, в котором нагрев осуществляется путем подведения тока на нагревательные элементы, состоит из каркаса (1), к которому через изолирующие приспособления крепятся кольцевые токоподводящие шины (2) соответствующей полярности, на которых закреплены нагревательные элементы - лампы (3), при этом цоколи ламп (4) выполнены в виде «гармошки» из тугоплавкого материала. Конструкция цоколей ламп (4) в виде «гармошки» устраняет вероятность разрушения ламп (3) за счет тепловых деформаций колбы и позволяет повысить надежность работы ламп (3). Конструкция нагревателя образует независимые, изолированные друг от друга секции, создающие зоны нагрева отсека ЛА. При этом с внешней стороны каркаса устанавливаются отражающие экраны (5), представляющие собой сегменты цилиндрической формы, гладко отполированные с внутренней стороны для максимально лучшего отражения теплового потока. С целью устранения деформаций в процессе нагрева, отражающие экраны устанавливаются с зазором относительно друг друга. В верхней части расположена плоская цилиндрическая крышка (6) представляющая собой диск цилиндрической формы, с внутренней стороны гладко отполированной для максимально лучшего отражения теплового потока, нивелирующая потерю излучения. Крышка (6) и отражающие экраны (5) образуют закрытый объем, тем самым уменьшая потерю тепла за счет конвекции. Нагреватель устанавливается и закрепляется при помощи 4-х «лап» (7), привариваемых к стойкам каркаса. Для подъема нагревателя в каркас сверху вворачиваются рым-болты (8).

Нагреватель работает следующим образом: в процессе испытания нагревательные элементы, расположенные по секциям, посредством подачи тока, нагреваются, оказывая тепловое воздействие с различной температурой на внешнюю поверхность отсека. Контроль за температурой осуществляется с помощью датчиков, установленных на отсеке в каждой зоне прогрева.

1. Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата (ЛА), содержащий каркас, нагревательные элементы, токоподводящие шины, отличающийся тем, что каркас выполнен в виде цилиндра с независимыми, изолированными друг от друга секциями, создающими зоны прогрева отсека ЛА, на внешней поверхности которого установлены отражающие экраны, а в верхней его части установлена крышка.

2. Нагреватель по п. 1, отличающийся тем, что нагревательные элементы представляют собой лампы, цоколи которых выполнены в виде гармошки.

3. Нагреватель по п. 1, отличающийся тем, что отражающие экраны представляют собой сегменты цилиндрической формы.

4. Нагреватель по пп. 1, 3, отличающийся тем, что отражающие экраны гладко отполированы с внутренней стороны.

5. Нагреватель по п. 1, отличающийся тем, что крышка представляет собой диск цилиндрической формы.

6. Нагреватель по пп. 1, 5, отличающийся тем, что крышка гладко отполирована с внутренней стороны.



 

Похожие патенты:

Изобретение относится к планарному нагревательному элементу (1) с резисторной структурой (2) с положительным ТКС, расположенной на заданной площади (3) первой поверхности (4) подложки (5), причем резисторная структура (2) с положительным ТКС снабжена соединительными электроконтактами (6) для подключения к источнику (7) электрического напряжения, причем резисторная структура (2) с положительным ТКС включает, исходя от обоих соединительных электроконтактов (6), по меньшей мере внутреннюю токопроводящую дорожку (8) и параллельно подключенную внешнюю токопроводящую дорожку (9), причем сопротивление внутренней токопроводящей дорожки (8) больше сопротивления внешней токопроводящей дорожки (9) и причем сопротивления внутренней токопроводящей дорожки (8) и внешней токопроводящей дорожки (9) рассчитаны таким образом, чтобы при подведении напряжения обеспечить главным образом равномерное распределение температуры в границах заданной площади (3) поверхности.

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов, работающих в широкой спектральной области от ультрафиолетового до среднего инфракрасного диапазона длин волн.

Изобретение относится к устройствам для получения монокристаллов тугоплавких фторидов горизонтальной направленной кристаллизацией из расплава. Устройство содержит вакуумную камеру 1 с размещенным в ней тепловым узлом 2, состоящим из углеграфитовых теплоизолирующих модулей 3, верхнего 4 и нижнего 5 нагревателей и тепловых экранов 15, графитового контейнера 6 с шихтой кристаллизуемого материала, установленного с возможностью перемещения в вакуумной камере 1, штуцеров подачи инертного газа 10 и системы вакуумирования и/или откачки газообразных продуктов 9, смотрового окна 11, при этом верхний плоский ленточный нагреватель Г-образной формы 4 и нижний ленточный нагреватель П-образной перевернутой формы 5 выполнены в виде единых с шинами графитовых моноблоков, односторонне закрепленных с водоохлаждаемыми токовводами вакуумной камеры с помощью разъемного соединения.

Изобретение может быть использовано для лучевой термической обработки материалов, в частности для резки, сварки, гибки, изготовления отверстий. Формируют пятно контакта посредством зеркальной инфракрасной электрической лампы, неподвижно установленной в цилиндрическом корпусе, и двояковыпуклой линзы из того же стекла, что и стекло колбы лампы.

Изобретение относится к стендовому оборудованию для испытаний радиопрозрачных обтекателей (РПО). Нагреватель содержит каркас (1) с закрепленными на нем нагревательными панелями (3) с трубчатыми инфракрасными лампами (4), расположенными вокруг испытуемого обтекателя (5) с установленной в нем антенной (6).

Область использования: стендовые испытания на прочность конструкций летательных аппаратов (ЛА), например обтекателей на внешнее давление при неравномерном нагреве. Сущность: нагреватель для стенда испытаний на прочность при неравномерном нагреве содержит гибкие поверхностные нагревательные элементы (НЭ) переменного сечения из токопроводящего материала и теплоизолирующую оболочку.

Изобретение относится к аккумулятору транспортного средства. Аккумулятор транспортного средства содержит один аккумуляторный модуль, размещенный под панелью пола транспортного средства; другой аккумуляторный модуль, размещенный рядом с одним аккумуляторным модулем и имеющий высоту, превышающую высоту одного аккумуляторного модуля.

Изобретение относится к нагревательному модулю, эффективному при управлении температурой аккумуляторного модуля, изготовленного посредством пакетирования определенного числа аккумуляторных элементов.

Изобретение относится к области электротехники, а в частности к электрическим приборам и устройствам, используемым в холодное время года для отопления бытовых и производственных помещений, а также салонов и кабин подвижного состава пассажирского и индивидуального транспорта.

Изобретение относится к области теплотехники, к технологии нагрева жидких и др. .

Изобретение относится к области испытаний твердых тел и может быть использовано для идентификации невидимой ткани. Новым является то, что испытания проводятся в четыре этапа.

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов (ЛА), а именно к способам контроля радиотехнических характеристик (РТХ) радиопрозрачного обтекателя (РПО) в условиях, имитирующих аэродинамический нагрев.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к испытательной технике и может быть использовано для исследования влияния эффекта морозного пучения грунта на заземляющий электрод. Предложенная установка для исследования влияния эффекта морозного пучения грунта на заземляющий электрод содержит полый корпус.

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ).

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ) на основе результатов теплового контроля при нагружении изделий механическими колебаниями.

Изобретение относится к испытательному оборудованию. Способ включает нагрев воздушного потока до заданной температуры, подачу его во внутреннюю полость объекта испытаний (ОИ) с заданным уровнем избыточного давления, разогрев ОИ до заданной температуры, воздействие вибрационных нагрузок на ОИ, обеспечение в процессе вибрационных нагрузок постоянной заданной температуры на наружной поверхности ОИ и заданной температуры на наружных поверхностях установки для испытаний.

Изобретения относятся к области измерительной техники и могут использоваться для оценки погрешности контроля качества композитных броневых преград на основе результатов теплового контроля при попадании поражающего элемента в броневую преграду за счет поглощения энергии броневой преградой, а также для проведения непосредственно контроля.

Изобретение относится к испытательной технике элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового и силового воздействия на внутреннюю поверхность отсека летательного аппарата в наземных условиях.
Наверх