Устройство ускорения тел из сверхпроводящих материалов

Изобретение относится к устройству ускорения тел из сверхпроводящих материалов. В устройстве предусмотрены последовательно соединенные датчик положения тела, преобразователь сигналов и силовая обмотка. Силовая обмотка размещена ниже оси канала, а датчик положения тела - выше оси канала, при этом направляющий канал выполнен из непроводящего материала и его внутренний диаметр превышает диаметр ускоряемого тела. Техническим результатом является повышение эффективности преобразования электромагнитной энергии в кинетическую энергию ускоряемого тела за счет снижения потерь на трение. 3 ил.

 

Изобретение относится к ускорительной технике, позволяющей получить высокие скорости ускоряемого тела (снаряда), и может быть использовано в том числе для проведения научных и прикладных работ.

Наиболее близким по технической сущности к заявляемому устройству является «Коаксиальный электромагнитный ускоритель» [RU 2406279 МПК F41B 6/00, заявл. 06.09.2019, опубл. 10.12.2010 (прототип)], состоящий из первичной обмотки в виде сверхпроводящего соленоида, подключенную к источнику постоянного тока, внутри которой коаксиально размещен магнитный экран в виде трубы из сверхпроводящего материала, подключенной к блоку охлаждения, на конце трубы размещена дополнительная обмотка, подключенная к источнику импульсного тока, при этом внутри трубы под дополнительной обмоткой или на трубе рядом с ней размещен снаряд, выполненный из электропроводящего материала. Изобретение позволяет плавно разгонять тела в течение длительного времени до необходимой скорости, снизить массу и габариты устройства.

Недостаткам данного устройства является низкая эффективность преобразования электромагнитной энергии в кинетическую энергию ускоряемого тела, обусловленная наличием потерь на трение, возникающим при движении снаряда в стволе.

Техническим результатом изобретения является повышение эффективности преобразования электромагнитной энергии в кинетическую энергию ускоряемого тела за счет снижения потерь на трение.

Указанный технический результат достигается тем, что в устройство ускорения тел из сверхпроводящих материалов, состоящее из первичной обмотки в виде сверхпроводящего соленоида, подключенной к источнику постоянного тока, внутри которой коаксиально размещен направляющий канал, согласно изобретению, дополнительно введены последовательно соединенные датчик положения тела, преобразователь сигналов и силовая обмотка, причем силовая обмотка размещена ниже оси канала, а датчик положения тела - выше оси канала, при этом направляющий канал выполнен из непроводящего материала и его внутренний диаметр превышает диаметр ускоряемого тела.

Сущность изобретения заключается в том, что дополнительно введены последовательно соединенные датчик положения тела, преобразователь сигналов и силовая обмотка, причем силовая обмотка размещена ниже оси канала, а датчик положения тела - выше оси канала, при этом направляющий канал выполнен из непроводящего материала и его внутренний диаметр превышает диаметр ускоряемого тела.

Известно, что в результате взаимодействия магнитного поля силовой обмотки и сверхпроводящего тела возникает магнитная сила, обеспечивающая компенсацию силы тяжести ускоряемого тела [Калашников С.Г. Элетричество. - М.: Наука, 1970. - С. 361-365.], при этом исключается непосредственный контакт ускоряемого тела с внутренней поверхностью канала за счет чего исключаются потери на трение, таким образом повышается эффективность преобразования электромагнитной энергии в кинетическую энергию ускоряемого тела.

Датчик положения тела в канале предназначен для измерения смещения положения ускоряемого тела относительно оси канала и может быть выполнены в виде двух индукционных преобразователей.

Преобразователь сигналов служит для формирования управляющего напряжения, подаваемого на силовую обмотку. На фиг. 3 представлена блок-схема возможной реализации преобразователя сигналов, включающая усилитель сигналов и усилитель мощности.

Силовая обмотка создает магнитное поле, компенсирующее силу тяжести ускоряемого тела и может быть выполнена в виде плоской обмотки.

Направляющий канал выполнен из непроводящего материала и его внутренний диаметр превышает диаметр ускоряемого тела.

Предлагаемое устройство представлено на фиг. 1, 2 и 3, где: 1 - тело из сверхпроводящего материала; 2 - направляющий канал; 3 - сверхпроводящий соленоид; 4 - силоваяобмотка; 5 - импульсный генератор постоянного тока (взрывной МГД-генератор); 6 - преобразователь сигналов измерительных обмоток; 7 - датчик положения тела в канале; 8 - усилитель сигнала, 9 - усилитель мощности.

Предлагаемое устройство работает следующим образом: ускоряемое тело 1, охлажденное до температуры сверхпроводящего состояния удерживается и центрируется относительно оси направляющего канала 2 при помощи вспомогательной силовой обмотки 4, управляемой от преобразователя сигналов 6. При этом магнитное поле силовой обмотки 4 (вектор В фиг. 1) за счет взаимодействия со сверхпроводящим телом 1 индуцирует электромагнитные силы, которые удерживают тело 1 в подвешенном состоянии на оси направляющего канала 2. Сигнал от датчика положения 7 подается на вход преобразователя сигналов 6, на выходе которого формируется управляющее напряжение, воздействующее на силовую обмотку 4. Причем, величина управляющего напряжения, а с ним и величина удерживающей силы пропорциональна смещению тела 1 относительно оси канала 2. Генератор постоянного тока 5 (например, импульсный взрывной МГД - генератор) генерирует импульс постоянного тока, питающий обмотку сверхпроводящего соленоида 3. Возникающее при этом магнитное поле взаимодействует со сверхпроводящим телом 1 и создает силу Лоренца (вектор F фиг. 1), заставляя его ускорятся вдоль оси канала 2. При этом магнитное поле силовой обмотки 4 удерживает тело 1 от непосредственного контакта со стенками направляющего канала 2 на время его ускорения.

Устройство ускорения тел из сверхпроводящих материалов, состоящее из первичной обмотки в виде сверхпроводящего соленоида, подключенной к источнику постоянного тока, внутри которой коаксиально размещен направляющий канал, отличающееся тем, что дополнительно введены последовательно соединенные датчик положения тела, преобразователь сигналов и силовая обмотка, причем силовая обмотка размещена ниже оси канала, а датчик положения тела - выше оси канала, при этом направляющий канал выполнен из непроводящего материала и его внутренний диаметр превышает диаметр ускоряемого тела.



 

Похожие патенты:

Изобретение относится к технике генерации электромагнитных импульсов и ударных волн. Технический результат - увеличение плотности посылаемой энергии при воздействии на объект.

Изобретение относится к области плазменной техники. Устройство на базе рельсотрона выполнено в виде коаксиальной линии КЛ, в котором возникающий между электродами КЛ разряд использован в качестве «поршня».

Изобретение относится к области вооружения, а именно к излучателям направленного действия. Излучатель направленного действия содержит конденсатор с коаксиально расположенными цилиндрическими обкладками, между которыми коаксиально с радиальной направленностью размещены кольцевые обкладки двух пар конденсаторов.

Изобретение относится к способам электротермического ускорения твердых тел и предназначен для разгона снарядов до высоких, более 1 км/с скоростей. Снаряд с донной частью в форме стакана, выполненного из диэлектрика и заполненного полимером с повышенной электрической проводимостью, помещают между проводящими рельсами.

Предложен низкочастотный излучатель электромагнитной энергии. Он содержит трансформаторы с магнитопроводом, замыкающимся с помощью излучателей и вторичных обмоток трансформаторов.

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД.

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД.

Изобретение относится к способам электротермического ускорения твердых тел. В способе электротермического ускорения твердых тел разряд между рельсами-токоподводами перемещается вместе со снарядом перемычкой, что провоцирует разряд между дном снаряда и рельсами.

Изобретение относится к области ускорительной техники и может быть использовано для ускорения макротел, моделирования микрометеоритов и техногенных частиц, применяться в физике высокоскоростного удара.

Изобретение относится к электромагнитным пусковым установкам. Ускоритель содержит силовой корпус и находящиеся в нем рельсы, источник тока и подмагничивающие катушки, неполярные коммутаторы, систему управления коммутаторами, конденсаторный накопитель и источник питания накопителя.
Наверх