Способ получения нанокапсул сухого экстракта стевии



Владельцы патента RU 2695618:

Частное образовательное учреждение высшего образования "Региональный открытый социальный институт" ЧОУ ВО "РОСИ" (RU)

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта стевии в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт стевии добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают диэтиловый эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в фармацевтической и пищевой промышленности. 3 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии, косметической и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - сухой экстракт стевии, при получении нанокапсул методом осаждения нерастворителем с применением диэтилового эфира в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием диэтилового эфира в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и сухого экстракта стевии - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул сухого экстракта стевии.

ПРИМЕР 1. Получение нанокапсул сухого экстракта стевии, соотношение ядро:оболочка 1:3

1 г сухого экстракта стевии добавляют в суспензию 3 г альгината натрия в гексане в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул сухого экстракта стевии, соотношение ядро:оболочка 1:1

1 г сухого экстракта стевии добавляют в суспензию 1 г альгината натрия в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

Пример 3. Получение нанокапсул сухого экстракта стевии, соотношение ядро:оболочка 1:2

1 г сухого экстракта стевии добавляют в суспензию 2 г альгината натрия в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул сухого экстракта стевии, характеризующийся тем, что сухой экстракт стевии добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают диэтиловый эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.



 

Похожие патенты:

Использование: для планаризации поверхности наноструктур материалов. Сущность изобретения заключается в том, что способ планаризации поверхности наноструктур материалов электронной техники осуществляют пучком газовых кластерных ионов, а в качестве рабочего газа пучка газовых кластерных ионов используют ксенон.

Изобретение имеет отношение к способу получения композиционного нанопокрытия на наноструктурированном титане. Способ включает синтез кальцийфосфатных структур на поверхности наноструктурированного титана.

Изобретение относится к новым соединениям в ряду индолиновых спиробензопиранов (SP), а именно к сложноэфирным производным 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2H-1-бензопиран-2,2'-индолина] общей формулы , где R = HS-(CH2)n-; где n=1 (SP 1), n=2 (SP 2), n=10 (SP 3);HOOC(CH2)2SS(CH2)2-(SP 4); которые могут быть использованы в качестве фотоактивных комплексообразователей с квантовыми точками и катионами металлов.

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное заключается во включении участков нормальных сопротивлений в наноразмерный сверхпроводник.

Изобретение относится к способу ионно-плазменного получения наноструктур на поверхности вольфрама. Сначала производят обработку поверхности образца в плазме индукционного высокочастотного разряда в аргоне при импульсном отрицательном напряжении смещения на изделии величиной выше 100 В с частотой до 100 кГц и коэффициентом заполнения до 100%.

Изобретение предназначено для модифицирования металл/углеродных наноструктур, обладающих хорошей совместимостью с полимерными материалами для применения во вспучивающихся огнезащитных покрытиях и других полимерных композициях.

Изобретение относится к нанотехнологии и химической промышленности и может быть использовано при изготовлении полимерных композиционных материалов. Сначала графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды.

Изобретение относится к способам формирования тонких наноструктурных пленок оксида графена на подложках из различных, в том числе, гибких полимерных материалов, и может быть использовано для создания активных элементов сенсоров на основе оксида графена.

Группа изобретений относится к области медицины и предназначена для получения и применения в пищевой, парфюмерной и фармацевтической промышленности композиции, обладающей антимикробным и антитоксическим действием.

Изобретение относится к жидким антикоррозионным составам на водной основе и может использоваться для защиты от коррозии в промышленных и хозяйственных целях, в частности для защиты от коррозии конструкций и деталей из металлов и сплавов на основе железа и алюминия, контактирующих с агрессивными средами.

Изобретение относится к области нанотехнологии, а именно нанотехнологии интерактивного взаимодействия, датчиков или приведения в действие, например, квантовых точек в качестве биомаркеров.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта красной щетки характеризуется тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - сухой экстракт красной щетки, при этом сухой экстракт красной щетки добавляют в суспензию каппа-каррагинана в изопропаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают ацетонитрил, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта босвеллии характеризуется тем, что сухой экстракт босвеллии добавляют в суспензию гуаровой камеди в циклогексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 800 об/мин, далее приливают 5 мл 1,2-дихлорэтана, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию каппа-каррагинана в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 750 об/мин, далее приливают четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул доксициклина характеризуется тем, что в суспензию гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок доксициклина, затем добавляют хладон-112, причем массовое соотношение доксициклин : гуаровая камедь составляет 1:1, 1:2 или 1:3, полученную суспензию нанокапсул отфильтровывают и сушат.

Группа изобретений относится к области ветеринарии, а именно к набору для образования физического барьера в соске животного и к способу терапии или предотвращению микробной инфекции ткани молочной железы сельскохозяйственного животного, включающему введение состава гидрогеля в ткань молочной железы животного, где состав гидрогеля содержит: раствор окислителя, содержащий макромер поливинилового спирта (ПВС), функционализированный N-акрилоил-аминоацетальдегид диметилацеталем (NAAADA), многоатомный спирт и перекись водорода, и раствор восстановителя, содержащий макромер ПВС, функционализированный NAAADA, многоатомный спирт и Fe(II), причем растворы окислителя и восстановителя объединяют с образованием гидрогеля.

Изобретение относится к способу получения покрытых цитратом и легированных фторидом наночастиц аморфного фосфата кальция для применения в биомедицине в связи с его биоразлагаемостью и биологической активностью; он также стимулирует неспецифическую адгезию клеток и остеогенерацию.
Изобретение относится к способу получения нанокапсул витамина PP в гуаровой камеди. Способ характеризуется тем, что витамин РР добавляют в суспензию гуаровой камеди в бутаноле в присутствии поверхностно-активного вещества, в качестве которого используют препарат Е472с, при перемешивании 800 об/мин, после чего добавляют хладон-113.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул биопага-Д в оболочке из каппа-каррагинана.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта стевии в оболочке из гуаровой камеди.

Изобретение относится к фармацевтической композиции для лечения перегрузки железом в форме порошка, содержащего от 25 масс. % до 45 масс.
Наверх