Вакуумная камера термоядерного реактора

Изобретение относится к конструкции вакуумной камеры (ВК) и бланкета, которые являются элементами термоядерного реактора (ТЯР) или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Вакуумная камера термоядерного реактора состоит из корпуса, образованного внутренней и внешней оболочками, внутрикорпусного объема с металлоконструкциями и циркулирующим теплоносителем, системы циркуляции состоящей из трубопроводов подвода и отвода теплоносителя, теплообменника и насоса. В качестве теплоносителя используют раствор литийсодержащего материала, или раствор минорных актинидов, или раствор сырьевого материала, система циркуляции содержит отвод с патрубками байпаснога отбора части раствора и подачи раствора в систему циркуляции, установленный перед теплообменником на трубопроводе отвода раствора. Техническим результатом является упрощение конструкции бланкета и всей установки ДЕМО-ТИН и уменьшение потерь нейтронов из плазмы. 5 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к термоядерной технике, а именно, к конструкциям вакуумной камеры (ВК) и бланкета, которые являются элементами термоядерного реактора (ТЯР) или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Возможно его использование в любых установках, где существует необходимость трансмутации элементов под действием нейтронного потока.

В дальнейшем будем говорить об установке ДЕМО-ТИН.

Уровень техники

Вакуумная камера (ВК) - одна из основных систем термоядерных установок типа токамак, в частности установки ДЕМО-ТИН.

Известна конструкция ВК, предложенная в (Э.А. Азизов и др. Токамак ДЕМО-ТИН: концепция электромагнитной системы и вакуумной камеры. - ВАНТ. Сер. Термоядерный синтез, т. 38, вып.2, 2015, с. 5).

ВК состоит из трех элементов - корпуса; внутрикорпусного объема с металлоконструкциями и водой; внутреннего объема.

1. Корпус ВК - стальная тороидальная конструкция с патрубками D-образного вертикального сечения из двух коаксиальных оболочек - внутренней, обращенной к плазме, и наружной, обращенной к криостату.

2. Оболочки связаны между собой системой тороидальных и полоидальных ребер жесткости. Свободное пространство между ребрами и оболочками частично заполнено металлическими пластинами радиационной защиты. Остальной внутрикорпусной объем между. оболочками заполнен циркулирующей водой. В совокупности внутрикорпусные металлоконструкции и вода образуют железоводную радиационную защиту.

3. Внутренняя оболочка корпуса ограничивает внутренний объем ВК, в котором находятся первая стенка (ПС), дивертор, бланкет и разрядная камера, в которой протекает термоядерная реакция.

Эта конструкция является наиболее близкой к заявленному изобретению по совокупности существенных признаков и принимается за прототип.

Подробно конструкция ВК и функции ее элементов описаны в (А. Ю. Пашков и др. Переходные процессы в вакуумной камере установки ДЕМО-ТИН при авариях в системе ее охлаждения, и в системах охлаждения компонентов, обращенных к плазме. - ВАНТ. Сер. Термоядерный синтез, т. 40, вып. 3, 2017, с. 78).

Вода, циркулирующая между оболочками ВК, выполняет две функции: во-первых, служит теплоносителем - отводит тепло, выделяющееся в результате взаимодействия с нейтронами и гамма-квантами как в ней самой, так и в корпусе ВК и внутрикорпусных металлоконструкциях радиационной защиты; во-вторых - является радиационной защитой. Вода повышенной температуры, в корпусе ВК используется так же для его прогрева при определенных режимах работы.

Система охлаждения и прогрева корпуса ВК состоит из нескольких контуров. Внутренний контур (охлаждающий непосредственно корпус) состоит из независимых первого и второго внутренних контуров. Терло от внутренних контуров через промежуточные теплообменники передается во внешний контур, который сбрасывает тепло в окружающую среду. Внутренние контура оборудованы сбросными клапанами, срабатывающими при повышении давления в контурах.

ВК выполняет следующие основные функции:

- служит основой для крепления компонентов, обращенных к плазме (в том числе бланкета), диагностических и обеспечивающих систем;

- обеспечивает поддержание вакуума в разрядной камере токамака;

- создает барьер безопасности при аварийных ситуациях;

- снижает потоки нейтронов и гамма-квантов на магнитные катушки и обеспечивает радиационные санитарные нормы в здании токамака.

Бланкет - одна из основных систем установок типа токамак, где происходит утилизация основной части энергии нейтронов из плазмы. Как правило, бланкет состоит из отдельных модулей и предназначен для трансмутации изотопов. Обычно рассматриваются три вида трансмутации.

1. Для воспроизводства выгорающего в термоядерной реакции трития используются модули, в конструкцию которых входят литийсодержащие материалы (ЛСМ).

Известны конструкции бланкета, в котором ЛСМ находятся в твердом состоянии. (В.В. Кевролев. Бланкет термоядерного реактора на основе окиси лития. - ВАНТ. Сер. Термоядерный синтез, вып. 1, 1986, с. 37). В качестве ЛСМ предлагается использовать металлический литий, эвтектики лития и свинца, смесь фтористых солей - флайб, керамики Li4SiO4, Li2SiO3, LiAlO2, LiO2.

Известны конструкции бланкета, в которой модули содержат водные растворы литийсодежащих солей (например, LiOH, LiNO3) - ITER Concept definition, Vol. 2, p. 314, International Atomic Energy Agency, Vienna, 1989.

2. Для наработки делящегося топлива используются модули, в конструкцию которых входят сырьевые материалы Th232, U238. (Е.П. Велихов и др. Ядерная энергетическая система с реакторами деления и синтеза - стратегический ориентир развития отрасли - ВАНТ, Сер. Термоядерный синтез, т. 40, вып. 4, 2017, с. 5).

3. Для трансмутации минорных актинидов (МА) - трансурановых элементов - и превращения их в короткоживущие продукты деления используются модули, содержащие MA. (А.А. Борисов. Возможности керамического бланкета термоядерного реактора ДЕМО-С для трансмутации нептуния в нитридном топливе. ВАНТ. Сер. Термоядерный синтез, вып. 4, 2004, с. 3).

Конструкция бланкета, состоящего из отдельных модулей, расположенных во внутренней полости ВК, обладает определенными недостатками:

1. Использование отдельных модулей требует устройств для перегрузки каждого из них.

2. Наличие множества модулей увеличивает долю конструкционных материалов (металла) в бланкете, а металл является паразитным поглотителем нейтронов.

3. Модули бланкета по конструктивным причинам не покрывают всю внутреннюю поверхности ВК (например, отсутствуют в районе центрального соленоида, дивертора).

4. Отбор наработаного трития т.е. извлечение его из бланкета ТЯР или ТИН, производится обычно следующими способами:

1) Для выделения трития из модуля производится удаление модуля из установки и замена его на другой, что требует длительного простоя всей установки.

2) Для выделения трития из модуля производится прокачка через модуль газа-носителя трития. При этом остановка ТЯР или ТИН не требуется, но усложняется конструкция бланкета, кроме того, бланкет должен быть высокотемпературным. Так же требуются периодические остановки для замены ЛСМ.

Раскрытие изобретения

Технической проблемой, на решение которой направлено заявляемое изобретение, является упрощение конструкции бланкета и всей установки ДЕМО-ТИН и уменьшение потерь нейтронов из плазмы.

Технический результат заявляемого изобретения заключается в том, что наработка трития или делящихся изотопов или трансмутация МА производится внутри корпуса вакуумной камеры-бланкета (ВКБ), заполненного раствором или растворами.

Технический результат достигается тем, что предложена вакуумная камера термоядерного реактора, состоящая из корпуса, образованного внутренней и внешней оболочками, внутрикорпусного объема с металлоконструкциями и циркулирующим теплоносителем, системы циркуляции состоящей из трубопроводов подвода и отвода теплоносителя, теплообменника и насоса при этом в качестве теплоносителя используют раствор литийсодержащего материала, или раствор минорных актинидов, или раствор сырьевого материала, система циркуляции содержит отвод с патрубками байпасного отбора части раствора и подачи раствора в систему циркуляции, установленный перед теплообменником 1 на трубопроводе отвода раствора.

В предпочтительном варианте:

- на внутреннюю оболочку корпуса, со стороны, обращенной к раствору, нанесен слой материала, размножающего нейтроны;

- во внутреннем объеме корпуса установлен как минимум один модуль внутреннего бланкета с твердыми минорными актинидами;

- между внутренней и внешней оболочками корпуса расположена металлическая перегородка, делящая внутрикорпусной объем на две независимые камеры, каждая со своим раствором и своей системой циркуляции;

- раствор выполнен на основе тяжелой воды.

Таким образом, совокупность существенных признаков заявляемого технического решения обеспечивает упрощение конструкции токамака и ускорение и упрощение процесса загрузки/перегрузки бланкета.

Далее рассматриваются два возможных варианта конструкции ВКБ - однокамерная (с использованием только одного вида раствора) и двухкамерная (с использованием двух видов растворов).

Краткое описание чертежей

На Фиг. 1 представлен общий вид однокамерной ВКБ установки ДЕМО-ТИН, использующей только один вид раствора. Возможно использование раствора ЛСМ, сырьевых материалов или МА. Цифрами обозначены:

1 - плазма;

2 - внутренняя металлическая оболочка ВКБ;

3 - внешняя металлическая оболочка ВКБ;

4 - раствор;

5 - трубопровод подачи раствора в ВКБ;

6 - трубопровод отвода раствора из ВКБ;

7 - байпасный отбор части раствора для извлечения наработанных изотопов или продуктов деления;

8 - слой материала - размножителя нейтронов;

9 - модуль внутреннего бланкета, содержащий МА;

10 - циркуляционный насос раствора;

11 - промежуточный теплообменник раствора.

На Фиг. 2 представлен общий вид двухкамерной ВКБ установки ДЕМО-ТИН, использующей комбинацию растворов ЛСМ, сырьевых материалов и МА. Цифрами обозначены:

1 - плазма;

2 - внутренняя металлическая оболочка ВКБ;

3 - внешняя металлическая оболочка ВКБ;

4 - первый раствор;

5 - трубопровод подачи (подвода) первого раствора в первую камеру ВКБ;

6 - трубопровод отвода первого раствора из первой камеры ВКБ;

7 - байпасный отбор части первого раствора для извлечения продуктов деления;

8 - слой материала - размножителя нейтронов;

10 - циркуляционный насос первого раствора;

11 - промежуточный теплообменник первого раствора;

12 - второй раствор;

13 - трубопровод подачи второго раствора во вторую камеру ВКБ;

14 - трубопровод отвода второго раствора из второй камеры ВКБ;

15 - байпасный отбор части второго раствора для извлечения наработанных изотопов;

16 - циркуляционный насос второго раствора;

17 - промежуточный теплообменник второго раствора;

18 - промежуточная металлическая перегородка, разделяющая первый и второй раствор.

На Фиг. 3 представлен вид однокамерной ВКБ (вертикальный разрез). Цифрами обозначены:

2 - внутренняя металлическая оболочка ВКБ;

3 - внешняя металлическая оболочка ВКБ;

4 - раствор;

8 - слой материала - размножителя нейтронов;

12 - металлические пластины.

На Фиг. 4 представлен вид однокамерной ВКБ (горизонтальный разрез). Цифрами обозначены:

2 - внутренняя металлическая оболочка ВКБ;

3 - внешняя металлическая оболочка ВКБ;

4 - раствор;

8 - слой материала - размножителя нейтронов;

12 - металлические пластины.

19 - изолирующие металлические перегородки между отсеками.

Осуществление изобретения

ВКБ конструктивно состоит из нескольких элементов - корпуса, внутрикорпусного объема с металлоконструкциями и раствором (или двумя растворами), а также внутреннего объема с компонентами, обращенными к плазме.

Суть заявляемого изобретения состоит в том, что внутрикорпусной объем ВКБ, не занятый металлическими пластинами, заполняется или раствором ЛСМ, или раствором сырьевых изотопов или раствором МА, либо комбинацией этих растворов). Растворы выполняют так же функцию теплоносителя и радиационной защиты. Перегрузка бланкета осуществляется путем байпасного отбора части раствора для выделения из него трития, делящихся изотопов или продуктов деления.

Корпус ВКБ - металлическая тороидальная конструкция D-образного вертикального сечения из двух коаксиальных оболочек - внутренней, обращенной к плазме, и наружной, обращенной «криостату. В качестве материала корпуса можно использовать сталь (как в прототипе), циркониевые или ванадиевые сплавы, уменьшающие паразитное поглощение нейтронов.

Оболочки связаны между собой системой тороидальных и полоидальных ребер жесткости. Свободное пространство между оболочками заполнено раствором (или двумя растворами) и металлическими пластинами, которые образуют радиационную защиту. Часть пластин может быть выполнена из материала - размножителя нейтронов (например, свинца). Т.к. ВКБ окружает плазму со всех сторон, то практически все нейтроны, рожденные в плазме, будут попадать в раствор (или растворы) и использоваться для трансмутации изотопов. Возможна лишь незначительная утечка нейтронов через патрубки ВКБ, предназначенные для подачи топлива, диагностики, нагрева плазмы или ремонтных работ.

Корпус разделен на отдельные отсеки, отделенные друг от друга изолирующими металлическими перегородками поз. 19 на Фиг. 4. Число изолирующих перегородок равно числу секций ВКБ. Это необходимо для предотвращения большой течи раствора. В случае течи из одного отсека раствор сохраняется в остальных.

Система охлаждения ВКБ (Фиг. 1 и 2) представляет собой контур циркуляции, как в прототипе, но так же включает в себя байпасную систему отбора трития 7 и/или 15, расположенную на трубопроводе отвода раствора 6 и/или 14 перед теплообменником 11 и/или 17 и подачи раствора обратно в систему циркуляции.

ВКБ состоит из внутренней 2 и внешней 3 металлических оболочек, связанных между собой системой тороидальных и полоидальных ребер жесткости для придания прочности конструкции. Свободное пространство между оболочками заполнено раствором 4 ЛСМ и металлическими пластинами 12 фиг. 3,4. Под действием потока нейтронов из плазмы 1 в растворе ЛСМ 4 происходит реакция

Li+n=Т+Не

Насос первого или единственного контура циркуляции 10 подает раствор через трубопровод 5 во внутрикорпусной объем ВКБ, где он нагревается тепловой энергией, выделяющейся под действием нейтронов в самом растворе 4, оболочках 2 и 3 и металлических пластинах 12 фиг. 3, 4. Затем раствор через трубопровод 6 отводится в. промежуточный теплообменник 11, где он отдает тепло воде второго контура охлаждения.

От раствора в трубопроводе 6, отводимого в теплообменник, производится байпасный отбор его части через трубопровод 7 в систему извлечения трития, а затем раствор возвращается в первый контур циркуляции.

Возможно использование в ВКБ внутренней оболочки, покрытой материалом - размножителем нейтронов. Этот слой размножителя нейтронов охлаждается циркулирующим раствором. Эта конструкция увеличит количество нейтронов, попадающих в раствор.

Возможна установка во внутреннем объеме ВКБ модулей бланкета, содержащих делящиеся материалы, в частности минорные актиниды (МА) в твердом агрегатном состоянии. Деление МА нейтронами из плазмы создает дополнительное количество нейтронов, попадающих в раствор.

Сущность изобретения поясняется фиг. 1, 2 и 3, на которых представлены несколько вариантов конструкции ВКБ.

1 Простейший однокамерный вариант. Фиг. 1 и 3 ВКБ содержит внутреннюю оболочку 2, внешнюю оболочку 3, раствор ЛСМ 4 для воспроизводства трития между ними и металлические пластины 12.

2. Однокамерный вариант с размножителем нейтронов (Фиг. 1 и 3). ВКБ содержит внутреннюю оболочку 2, внешнюю оболочку 3, раствор 4 между ними и металлические пластины 12, а также слой размножителя 8 на внутренней оболочке 2. Охлаждение размножителя производится раствором 4.

3. Однокамерный вариант с внутренним бланкетом, содержащим МА. (Фиг. 1 и 3). ВКБ содержит внутреннюю оболочку 2, внешнюю оболочку 3, раствор 4 между ними и металлические пластины 12, а также модули внутреннего бланкета с МА 9, находящиеся во внутреннем объеме ВКБ и выполняющие функцию дополнительного источника нейтронов.

4. Однокамерный вариант с размножителем нейтронов и внутренним бланкетом, содержащим МА (Фиг. 1 и 3). ВКБ содержит внутреннюю оболочку 2, внешнюю оболочку 3 и раствор 4 между ними, слой размножителя 8 на внутренней оболочке 2 и модули внутреннего бланкета с МА 9, находящиеся во внутреннем объеме ВКБ и выполняющие функцию дополнительного источника нейтронов. В рассматриваемой конструкции все нейтроны из внутреннего бланкета попадают в раствор.

5. Простейший двухкамерный вариант (Фиг. 2). ВКБ состоит из двух камер, заполненных разными растворами. Первая камера ограничена с одной стороны внутренней металлической оболочкой ВКБ 2, а с другой промежуточной металлической перегородкой 18. Объем между этими перегородками заполнен первым раствором 4. Вторая камера ограничена с одной стороны промежуточной металлической перегородкой 18, а с другой внешней металлической оболочкой ВКБ 3. Объем между этими перегородками заполнен вторым раствором 12. Возможно следующее сочетание растворов:

1) Первый раствор МА, второй ЛСМ.

2) Первый раствор МА, второй сырьевых изотопов.

Использование двухкамерной конструкции дает следующие преимущества:

- Деление МА в первой камере под действием нейтронов из плазмы служит дополнительным источником нейтронов для второй камеры, в которой нарабатывается тритий или делящиеся изотопы.

- Двухкамерная конструкция позволяет одновременно трансмутировать МА и нарабатывать тритий или делящиеся изотопы.

6. Двухкамерный вариант с размножителем нейтронов. (Фиг. 2 и 3). ВКБ состоит из первой камеры, ограниченной внутренней металлической оболочкой 2 и промежуточной металлической перегородкой 18. Объем между этими перегородками заполнен первым раствором 4. Вторая камера ограничена с одной стороны промежуточной металлической перегородкой 18, а с другой внешней металлической оболочкой ВКБ 3. Объем между этими перегородками заполнен вторым раствором 12. На стороне внутренней металлической оболочки 2, обращенной к первому раствору, находится слой размножителя 8. Охлаждение размножителя производится первым раствором 4. Возможно размещение размножителя на промежуточной металлической перегородке 18. Если он находится в первой камере, то охлаждение производится первым раствором, а если во второй камере, то вторым раствором. Возможно размещение размножителя на промежуточной металлической перегородке 18 как в первой камере, так и во второй. Возможно размещение размножителя как на внутренней металлической оболочке 2, так и на промежуточной металлической перегородке 18. Размещение слоя размножителя на внешней металлической оболочке 3 представляется нерациональным.

Нейтроны из размножителя (размножителей) служат дополнительным источником нейтронов для растворов первой и второй камеры.

Использование внутреннего бланкета, содержащего твердые МА, в двухкамерной конструкции (Фиг. 2, поз. 9) представляется нерациональным и приводит к усложнению конструкции.

7. Вариант с раствором ЛСМ в тяжелой воде. Возможны варианты 1-6, в которых ЛСМ, МА и делящиеся изотопы растворены тяжелой воде, практически не поглощающей нейтроны. Подобный вариант дает максимальный коэффициент воспроизводства трития или наработки делящихся изотопов.

Ниже приведен пример конкретного выполнений устройства, который не ограничивает варианты его исполнения

Дальнейшее рассмотрение ведем для однокамерной ВКБ с раствором ЛСМ, предназначенной для наработки трития. Возможны так же варианты использования в качестве теплоносителя раствора МА для трансмутации их в короткоживущие продукты деления, или раствора сырьевого материала для наработки делящихся изотопов.

ВКБ состоит (фиг. 1 и 3) из внутренней 2 и внешней 3 металлических оболочек, связанных между собой системой тороидальных и полоидальных ребер жесткости для придания прочности конструкции.

Свободное пространство между оболочками заполнено раствором 4 ЛСМ (например, водным раствором LiOH или LiNO3) и металлическими пластинами 12. Под действием потока нейтронов из плазмы 1 в растворе ЛСМ 4 происходит реакция

Li+n=Т+Не

Насос первого контура циркуляции 10 подает раствор через трубопровод 5 во внутрикорпусной объем ВКБ, где он нагревается тепловой энергией, выделяющейся под действием нейтронов в самом растворе 4, оболочках 2 и 3 и металлических пластинах 12. Затем раствор через трубопровод 6 отводится в промежуточный теплообменник 11, где он отдает тепло воде второго контура охлаждения. Для предотвращения попадания трития в окружающую среду систему охлаждения ВКБ желательно сделать трехконтурной, причем давление воды во втором контуре больше давления раствора в первом. Для упрощения конструкции раствор имеет невысокие параметры (температура ~100°С и давление ~1 МПа).

Внутрикорпусной объем ВКБ разделен изолирующими металлическими перегородками (Фиг. 4, поз. 19) на отдельные секции. При течи раствора из одной секции это позволит избежать истечения раствора из всего внутрикорпусного объема ВКБ.

От раствора в трубопроводе 6, отводимого в теплообменник, производится байпасный отбор его части через трубопровод 7 в систему извлечения трития, а затем раствор возвращается в первый контур циркуляции (на чертежах не показано). Слой размножителя 8 на поверхности внутренней оболочки ВКБ 2, обращенной ж раствору 4, увеличивает общее число нейтронов, попадающих в раствор 4.

Принципиально возможными представляются два способа перегрузки камеры бланкета:

- Раствор при достижении в нем определенной концентрации наработанных изотопов (трития, продуктов деления МА или делящихся изотопов) сливается через патрубок отбора раствора и направляется на переработку. В бланкет заливается, через патрубок ввода раствора, новый раствор (ЛСМ, МА, сырьевых изотопов) с исходной концентрацией изотопов, подлежащих трансмутации;

- Перегрузка бланкета осуществляется путем байпасного отбора части раствора из контура циркуляции для выделения из него трития, продуктов деления МА или делящихся изотопов, затем в раствор добавляются изотопы, подлежащие трансмутации, и раствор возвращается в контур циркуляции. Остановка ТИН при этом не требуется.

При установке внутреннего бланкета с МА в его модуле 9, происходит деление МА нейтронами из плазмы образованием короткоживущих продуктов деления. Этот процесс так же является дополнительным источником нейтронов, попадающий в раствор 4. Дополнительные нейтроны способствуют увеличению коэффициента воспроизводства трития в ВКБ.

Металлические пластины 12 и раствор 4 выполняют так же функцию радиационной защиты, ослабляющей поток нейтронов из плазмы за пределы ВКБ.

Таким образом, заявленное изобретение решает следующие основные проблемы, сохраняя все функции известной конструкции ВК, появляется возможность использовать ее и для трансмутации изотопов, т.е. придать ее функцию бланкета. Для этого вода, заполняющая ВК, заменяется на раствор ЛСМ, или сырьевых материалов или МА

Подобная конструкция, обладает следующими преимуществами.

- Нет необходимости устанавливать во внутреннем объеме ВК модули бланкета со своей системой охлаждения, креплениями и т.п. Конструкция бланкета упрощается;

- Упрощается система перегрузки бланкета. Отбор части раствора для выделения из него трития, делящихся изотопов или продуктов деления, как и подпитку бланкета свежим растворов можно производить непрерывно;

- Слой раствора покрывает практически всю поверхность ВКБ (за исключением технологических портов), т.е. практически все нейтроны из плазмы попадают в раствор;

- Отсутствие бланкета, находящегося во внутреннем объеме ВК, позволяет увеличить расстояние между внутренней и внешней оболочками ВКБ (увеличить толщину слоя раствора без увеличения размеров внешней оболочки ВКБ и тем самым увеличить защитные свойства ВКБ и снизить радиационную нагрузку на сверхпроводниковые катушки). При использовании раствора ЛСМ наличие трития в растворе не создаст дополнительной радиационной нагрузки на сверхпроводниковые катушки, т.к. тритий, при распаде дает мягкое бета-излучение.

Заявляемое решение, позволит упростить конструкцию токамака, увеличить количество нарабатываемого трития или делящихся изотопов или количество трансмутируемых МА и не скажется отрицательно на безопасности ДЕМО-ТИН.

1. Вакуумная камера термоядерного реактора, состоящая из корпуса, образованного внутренней 2 и внешней 3 оболочками, внутрикорпусного объема с металлоконструкциями и циркулирующим теплоносителем, системы циркуляции, состоящей из трубопроводов подвода 5 и отвода 6 теплоносителя, теплообменника 11 и насоса 10, отличающаяся тем, что в качестве теплоносителя используют раствор литийсодержащего материала, или раствор минорных актинидов, или раствор сырьевого материала, система циркуляции содержит отвод с патрубками байпасного отбора 7 части раствора и подачи раствора в систему циркуляции, установленный перед теплообменником 11 на трубопроводе отвода раствора 6.

2. Вакуумная камера термоядерного реактора по п. 1, отличающаяся тем, что на внутреннюю оболочку 2 корпуса, со стороны, обращенной к раствору 4, нанесен слой 8 материала, размножающего нейтроны.

3. Вакуумная камера термоядерного реактора по п. 1, отличающаяся тем, что во внутреннем объеме корпуса установлен как минимум один модуль внутреннего бланкета 9 с твердыми минорными актинидами.

5. Вакуумная камера термоядерного реактора по п. 1, отличающаяся тем, что между внутренней 2 и внешней 3 оболочками корпуса расположена металлическая перегородка 18, делящая внутрикорпусной объем на две независимые камеры, каждая со своим раствором и своей системой циркуляции.

6. Вакуумная камера термоядерного реактора по п. 1, отличающаяся тем, что раствор выполнен на основе тяжелой воды.



 

Похожие патенты:

Лимитер // 2687292
Изобретение относится к оборудованию для оснащения термоядерных реакторов типа токамак. Лимитер содержит емкость 1, заполненную литием 2 и имеющую тепловой контакт с оммическим или СВЧ-нагревателями 3, кольцо 4, зафиксированное вращающимися опорами 5, неподвижно закрепленными на корпусе токамака, внутренняя поверхность кольца 4 выстлана пористым материалом 6, смачиваемым расплавленным литием, а нижняя часть кольца 4 погружена в литий в емкости 1, через зубчатое зацепление 7 кольцо 4 приводится во вращение электродвигателем 8, емкость 1 имеет входящий и выходящий трубопроводы 9 и 10 для расплавленного лития.

Изобретение относится устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство включает полую цилиндрическую опору с двумя фланцами и установленными между ними гибкими стержневыми элементами, разделенными прорезями, выполненными в осевом направлении опоры.

Изобретение относится к способу оптимизации рециклинга рабочего газа в токамаке. Способ предусматривает поступление в плазму молекул и атомов рабочего газа с поверхностей стенок вакуумной камеры, подвижного и неподвижного лимитеров, и системы газонапуска с трубопроводом.

Изобретение относится к области термоядерного синтеза и может быть использовано в разъемных соединениях модуля бланкета и вакуумной камеры термоядерного реактора.

Изобретение относится к области исследования ударной сжимаемости и оптических свойств материалов за сильными ударными волнами при числах Маха более 5. Устройство ударного сжатия малоплотных сред посредством формирования квазистационарного Маховского режима отражения от оси содержит цилиндрический пустотелый заряд взрывчатого вещества, инициируемый гиперзвуковой по отношению к ВВ системой последовательного инициирования.
Изобретение относится к cпособу удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок. При взаимодействии с плазмой в процессе работы установки боро-углеродные покрытия эродируют.

Изобретение относится к мишени для проведения реакции термоядерного синтеза и к способу использования такой мишени. Мишень 1 для проведения реакции термоядерного синтеза выполнена в виде тонкостенного полого усеченного конуса 2, на внутренней поверхности которого нанесен слой 3 вещества термоядерного топлива, при этом размеры конуса сопоставимы по меньшей мере с размерами фокусного пятна в пучке лазерного излучения, используемого для воздействия на мишень.

Изобретение относится к устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство содержит гибкую опору, выполненную в виде стержней, установленных между двумя фланцами, компенсатор смещений и крепежный резьбовой элемент, выполненный в виде стопорной гайки с наружной резьбой.

Изобретение относится к устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Устройство содержит пластинчатые токопроводящие элементы с разнонаправленными участками поверхности, расположенные в виде пакета между фланцами.

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней датчиками контроля рентгеновского излучения плазмы 2 для регистрации периода пилообразных колебаний неустойчивости внутреннего срыва плазмы, соединенными с регулятором 3 пилообразных колебаний, сигнал с которого передают в контур управления положением вклада СВЧ-мощности, при этом регулятор 3 выполнен в виде аппаратно-программного комплекса, содержащего блок задания параметров 7, выходы которого соединены с блоком визуализации и обработки данных 8 и блоком алгоритмов управления 9, выходы которого соединены с блоком буферизации результатов измерения и вычисленных управляющих воздействий 12 и блоком генерации и выдачи управляющих сигналов 11, выход которого соединен с контуром управления положением вклада СВЧ-мощности, состоящим из магнитной системы управления 4 и обмоток управления положением плазменного шнура 5, при этом блок алгоритмов управления 9 соединен через блок каналов диагностики 10 с датчиками контроля рентгеновского излучения плазмы.

Изобретение относится к конструкции вакуумной камеры и бланкета, которые являются элементами термоядерного реактора или демонстрационного термоядерного источника нейтронов. Вакуумная камера термоядерного реактора состоит из корпуса, образованного внутренней и внешней оболочками, внутрикорпусного объема с металлоконструкциями и циркулирующим теплоносителем, системы циркуляции состоящей из трубопроводов подвода и отвода теплоносителя, теплообменника и насоса. В качестве теплоносителя используют раствор литийсодержащего материала, или раствор минорных актинидов, или раствор сырьевого материала, система циркуляции содержит отвод с патрубками байпаснога отбора части раствора и подачи раствора в систему циркуляции, установленный перед теплообменником на трубопроводе отвода раствора. Техническим результатом является упрощение конструкции бланкета и всей установки ДЕМО-ТИН и уменьшение потерь нейтронов из плазмы. 5 з.п. ф-лы, 4 ил.

Наверх