Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата

Изобретение относится к области измерительной техники, в частности метеорологии, и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. В интересующую область пространства запускают беспилотный летательный аппарат (БПЛА) с возможностью измерения скорости движения БПЛА по показаниям модуля системы спутниковой навигации. При этом БПЛА, выполненный способным зависать в заданной точке пространства, при достижении нужной точки с заранее выбранными координатами переводят в режим удержания географических координат, который периодически отключают на время установления скорости БПЛА определенной доли от скорости ветра, и рассчитывают скорость ветра по показаниям модуля системы спутниковой навигации. Затем режим удержания географических координат включается вновь и проводят измерения на другой высоте. Калибровка результатов измерений осуществляется путем сравнений измеренных скоростей БПЛА при различных временных промежутках при выключенном режиме удержания географических координат. Технический результат – упрощение процесса измерения и калибровки результатов измерения.

 

Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата относится к области измерительной техники, в частности к метеорологии, и предназначен для измерения вертикального профиля ветра в пограничном слое атмосферы.

Известны способы и устройства для определения скорости и направления ветра путем использования воздушных шаров или радиозондов (Патент на изобретение РФ №2101736, МПК G01W 1/02, 01.10.1998, патенты на полезные модели №103195, МПК G01W 1/08, 01.12.2010, №92204, МПК G01W 1/02, 10.03.2010).

Недостатком таких технических решений является невозможность проведения непрерывных измерений, так как обычно радиозонды запускаются дважды в сутки.

Наиболее близким к заявляемому изобретению является способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата, который выбран в качестве прототипа (RU 2617020). В нем используют беспилотный летательный аппарат (БПЛА) с известными калибровочными характеристиками влияния ветра на наклон вектора тяги, способный зависать в заданной точке пространства и снабженный датчиками наклона, температуры, давления, влажности и потребляемой двигателями мощности, который, при достижении им нужной точки с заранее выбранными географическими координатами переводят в режим удержания географических координат, равномерного движения по вертикали, затем запускают режим равномерного вращения вокруг вертикальной оси, через промежутки времени, кратные полному обороту аппарата вокруг вертикальной оси, измеряют калибровочные характеристиками БПЛА, фиксируя наклон вектора тяги БПЛА, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха, при этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса, используя заранее известные калибровочные характеристики и вновь измеренные, определяют направление и скорость ветра в вертикальном разрезе.

Недостатком прототипа является необходимость иметь калибровочные характеристики влияния ветра на наклон вектора тяги.

Задачей изобретения является упрощение процесса измерения и повышение точности измерений.

Технический результат - расширение функциональных возможностей, а именно возможность измерения усредненного вектора скорости ветра в вертикальном разрезе атмосферы.

Технический результат достигается тем, что, как и в известном способе определения усредненных значений скорости и направления ветра, запускают БПЛА

в интересующую область пространства на заданную высоту, направляя информацию на радиоприемную систему, при этом зонд снабжен системой спутниковой навигации, электронным гироскопом, электронным магнитным компасом.

В отличие от известного способа, в предлагаемом техническом решении используют беспилотный летательный аппарат (БПЛА) с заранее неизвестными калибровочными характеристиками, в котором периодически выключают режим удержания географических координат на определенное время и измеряют по системе спутниковой навигации набранную им скорость, а затем вновь включают режим удержания географических координат равномерного движения и возвращают БПЛА в исходную точку. Скрость БПЛА измеряется по показаниям модуля системы спутниковой навигации. Модуль системы спутниковой навигации в файле данных передает допплеровскую скорость наряду с координатными данными.

При выключении режима удержания географических координат БПЛА под действием силы аэродинамического сопротивления начинает двигаться с ускорением, величина которого дается следующим соотношением

Где а - ускорение БПЛА, ρ - плотность воздуха, С - коэффициент аэродинамического сопротивления, S - площадь БПЛА, М - масса БПЛА, u - модуль скорости ветра, v скорость БПЛА относительно воздуха. Это уравнение не имеет решения в элементарных функциях. Тем не менее, из общего решения следует, что при увеличении времени нахождения в режиме с выключенным удержанием географических координат скорость БПЛА приближается к скорости ветра по соотношению, близкому к экспоненциальному закону. Таким образом, можно записать

Где v(t) - скорость БПЛА относительно воздуха через некоторый момент времени, const - калибровочная постоянная.

Численные оценки показывают, что при разумных параметрах БПЛА за время 10 секунд БПЛА ускоряется до, примерно, 0.7 значения скорости ветра. Точное значение можно получить из процесса калибровки, который заключается в последовательных измерениях скорости БПЛА. При увеличении времени нахождения в режиме с выключенным удержанием географических координат скорость БПЛА приближается к скорости ветра по экспоненциальному закону. При измерении скорости БПЛА через, например, 10 секунд и 20 секунд отношение скорости через 20 секунд к скорости через 10 секунд будет равно калибровочной постоянной.

Способ осуществляется следующим образом.

1. Запускают БПЛА в интересующую область пространства.

2. Переводят БПЛА в режим удержания географических координат и периодически выключают режим удержания географических координат на определенное время. Измеряют по системе спутниковой навигации набранную им скорость.

3. Осуществляют калибровку процесса измерения путем измерения допплеровской скорости через заданные промежутки времени.

5. Переводят БПЛА в режим непрерывных измерений с передачей исходные данные передают на наземную станцию управления по штатному радиоканалу.

Для получения вертикального профиля ветра БПЛА перемещается по вертикали.

Данный алгоритм может выполняться автоматически, по программе.

Измеренные величины передаются наземной станции управления с телеметрией и анализируются автоматически в режиме реального времени.

Существенным отличием предлагаемого технического решения является отсутствие необходимости калибровок в аэродинамической трубе или иным другим способом. Из практики эксплуатации БПЛА известно, что время безаварийной работы БПЛА составляет, в среднем, 10 взлетов/посадок. После каждой аварии необходимо проводить повторную калибровку БПЛА. Изобретение позволяет производить калибровку без применения специального оборудования в точке измерения.

Дополнительные достоинства - это возможность использования любого стандартного БПЛА с штатным программным обеспечением и независимость процесса измерений от состояния облачности, тумана.

Способ определения усредненного вектора скорости ветра, по которому в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), снабженный навигационными приборами, отличающийся тем, что при достижении БПЛА нужной точки с заранее выбранными координатами его переводят в режим удержания географических координат, который периодически отключают на время установления скорости БПЛА определенной доли от скорости ветра, и рассчитывают скорость ветра по показаниям модуля системы спутниковой навигации, причем калибровка результатов измерений осуществляется путем сравнений измеренных скоростей БПЛА при различных временных промежутках при выключенном режиме удержания географических координат, после чего режим удержания географических координат включается вновь и проводят измерения на другой высоте.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано для обнаружения воздушных областей, опасных для полетов летательных аппаратов и других объектов, попадающих в эти области; для получения сведений о природе опасных ветровых потоков - в метеорологии и физике атмосферы.

Использование: для измерения скорости и направления перемещения воздушных масс в трехмерном пространстве. Сущность изобретения заключается в том, что пьезоэлектрические преобразователи ультразвукового акустического анемометра закреплены на каркасе в вершинах основания и вершине призмы с основанием в виде равностороннего треугольника и подключены к блоку формирования сигнала, приема и обработки данных, выход которого, в свою очередь, подключен к входу блока сбора информации.

Изобретение относится к области метеорологии и может быть использовано для определения зон возможного обледенения воздушных судов в режиме реального времени. Для этого в заданном районе наблюдения вначале регистрируют несколько фактических значений общего влагосодержания, затем регистрируют фактическое значение вертикального профиля температуры наземным метеорологическим температурным профилемером.

Изобретение относится к линиям электроснабжения. Определитель температуры провода контактной сети и воздушных линий электропередачи содержит датчик тока, датчик скорости ветра, датчик температуры окружающей среды, первый и второй функциональные преобразователи, блок вычисления перегрева, первый и второй сумматоры, источник стабилизированного напряжения, первый, второй, третий и четвертый задатчики постоянных параметров коэффициента теплоотдачи конвенцией, задатчик периметра провода, задатчик степени черноты поверхности провода и исполнительный орган, а также датчик направления ветра, датчик относительной влажности воздуха, первое, второе и третье программируемые многофункциональные средства, первый и второй переключатели с управляемым входом, первый, второй и третий пороговые элементы, первый и второй умножители, схему совпадения, задатчики массы, удельной теплоемкости, сопротивления единицы длины провода, задатчик температурного коэффициента сопротивления провода и блок масштабного коэффициента тока.

Способ определения прозрачности неоднородной атмосферы включает посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по трем неколлинеарным направлениям, с образованием отрезками между точками их пересечения двух областей зондирования, имеющих общий рассеивающий объем.
Изобретение относится к системам метеорологической радиолокации и может быть использовано для мониторинга метеорологических условий. Достигаемый технический результат – уменьшение массогабаритных размеров элементов системы, уменьшение энергопотребления, отсутствие необходимости постоянного обслуживания, возможность получения информации о локальных метеоусловиях через интернет, возможность анализа низких слоев атмосферы, которые обладают более высокой информативностью.

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях.

Группа изобретений относится к метеорологии и может быть использована для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое до высоты 2-3 км.

Изобретение относится к области метеорологии и может быть использовано для дистанционного измерения параметров атмосферы. Сущность: устройство состоит из сканирующего устройства и приемоответчика.

Изобретение относится к исследованиям в области индикации и идентификации химических веществ, в частности к оптимизации способа проведения специального химического контроля.
Наверх