Способ определения наличия деформации стопы в сагиттальной плоскости



Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости
Способ определения наличия деформации стопы в сагиттальной плоскости

Владельцы патента RU 2695730:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) (RU)
Федеральное государственное бюджетное учреждение "Российский ордена Трудового Красного Знамени научно-исследовательский институт травматологии и ортопедии имени Р.Р. Вредена" Министерства здравоохранения Российской Федерации (ФГБУ "РНИИТО им. Р.Р. Вредена" Минздрава России) (RU)

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано при планировании коррекции деформаций (реконструкции) стопы, включая все ее отделы, когда компоненты деформации (ангуляция, трансляция, укорочение) располагаются в сагиттальной плоскости. На рентгенограмме стопы, выполненной в боковой проекции, определяют точку «а», соответствующую заднему краю суставной поверхности блока таранной кости, и точку «b», соответствующую переднему краю. Определяют точку «с», соответствующую опорной точке головки 1-й плюсневой кости, и точку «d», соответствующую опорной точке пяточной кости. Все точки соединяют. Строят четырехугольник, где ab - верхняя сторона, a dc - нижняя сторона, используя референтные значения dab=103,2° (±7,2), abc=142,3° (±8,5), bcd=33,1° (±1,7), cda=81,1° (±8,6), k1=ad/ab=1,71 (±1,17), k2=bc/ab=2,99 (±0,8), k3=dc/ab=3,9 (±0,9). Строят четырехугольник таким, каким он должен быть при отсутствии деформации стопы. Сравнивают с реальным четырехугольником, построенным по рентгенограмме пациента. Если они не совпадают, определяют наличие деформации. Способ обеспечивает точное определение наличия деформации стопы в сагиттальной плоскости независимо за счет определения расположения на рентгенограмме соответствующих точек и проведения сравнительных геометрических построений. 11 ил., 1 пр.

 

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано при планировании коррекции деформаций (реконструкции) стопы, включающего все ее отделы, когда компоненты деформации (ангуляция, трансляция, укорочение) располагаются в сагиттальной плоскости.

Известны т.н. референтные линии и углы (РЛУ), позволяющие определить наличие деформации стопы:

1. Пяточно-опорный угол, в норме имеющий значение от 25° до 28° (Яременко Д.А., Рентгенологическое исследование в оценке анатомо-функционального состояния стопы / Д.А. Яременко, В.И. Ефименко, Р.В. Ефимов // Ортопедия, травматология. - 2004. - №1. - С. 16-20).

2. Угол наклона пяточной кости между касательной к подошвенной поверхности и горизонтальной плоскостью. В норме он составляет 15°-20° (Яременко Д.А., Рентгенологическое исследование в оценке анатомо-функционального состояния стопы /Д.А. Яременко, В.И. Ефименко, Р.В. Ефимов // Ортопедия, травматология. - 2004. - №1. - С. 16-20).

3. Таранно-пяточный угол, образованный осевыми линиями таранной и пяточной костей. В норме он составляет 50° (DeVries JG, Scharer B.J Foot Ankle Surg. 2015 May-Jun; 54(3):424-7.).

4. Угол Белера, образованный пересечением линий, одна из которых проходит от верхнего заднего края бугристости через задний край задней фасетки, а вторая от верхнего края задней фасетки через верхний край переднего отростка пяточной кости. В норме этот угол равен 20°-40°. (Su Y, Chen W, Zhang T, Wu X, Wu Z, Zhang Y. BMC Surg. 2013 Sep 24; 13:40. dok: 10.1186/1471-2482-13-40).

При наличии травматических деформации на уровне любого из отделов стопы значение данных РЛУ становится отличным от значений, принятых за норму. При врожденной патологии проведение референтных линий часто становится невозможным в связи с отсутствием четких рентгенологических ориентиров. В обоих случаях наличие или отсутствие деформации в лучшем случае только констатируется; планирование коррекции деформации, т.е. определение ее компонентов, вершины деформации, вариантов устранения, невозможно.

Аналогом предлагаемого изобретения является способ, предложенный Г.Р. Измайловым и соавт. (Исмайлов Г.Р. Расчет приемов реконструкции заднего отдела стопы/ Г.Р. Исмайлов, Д.В. Самусенко, Г.В. Дьячкова // Гений Ортопедии. - 2001. - №4. - С. 81-84). Согласно данному способу, длина пяточной кости определяется путем умножения ширины дистального метаэпифиза большеберцовой кости в наиболее широкой его части на индекс длины пяточной кости (1,95±0,03). После этого от наиболее крайней точки переднего отростка пяточной кости откладывается полученная длина пятки по ее оси, и в дистальной точке прокладываются две касательные к воображаемому пяточному бугру - вдоль нижнего края к головке первой плюсневой кости и перпендикулярно ей - вдоль заднего края. Индекс таранной кости вычисляется при этом по методике В.О. Маркса.

Однако данный способ применим только к заднему отделу стопы. Кроме этого его использование невозможно, если имеются сопутствующие деформации среднего отдела стопы и(или) дистального отдела большеберцовой кости. Сама пяточная кость может иметь торсионную деформацию, что влияет на точность измерения рентгенограмм. Так, в правильном положении дистального метаэпифиза большеберцовой кости, пяточная может находиться в таком положении, в котором измерить ее длину не представляется возможным.

Наиболее близкими к данному изобретению являются способы планирования коррекции деформаций среднего и заднего отделов, разработанные Соломиным Л.Н. и соавт. (Соломин Л.Н., Уханов К.А., Сорокин Е.П., Херценберг Д. Анализ и планирование коррекции деформаций заднего отдела стопы в сагиттальной плоскости. Травматология и ортопедия России. 2017; 23(1):23-32; Соломин Л.Н., Уханов К.А., Бойченко А.В., Херценберг Дж. Анализ и планирование коррекции деформаций среднего отдела стопы в сагиттальной плоскости. Вестник хирургии им. И.И. Грекова. 2017; 176(5): 59-63).

Согласно данным способам, осуществляется построение линии суставной поверхности блока таранной кости, определяется ее длина, по которой, с использованием референтных значений углов и коэффициентов, определяются должные оси среднего и заднего отделов стопы, а также должные длины среднего и заднего отделов стопы. Если оси и длины не совпадают с исследуемыми, то выполняют планирование коррекции деформации, а после коррекции контролируют ее точность.

Так, например, при использовании способа коррекции деформации пяточной кости при анализе рентгенограммы стопы в сагиттальной плоскости через точки а и b (края блока таранной кости) проводят линию 1 и измеряют расстояние от а до b (например, 35 мм). После этого определяют положение точки с: 35×2,56=89,6 мм, кпереди от точки b. Из этой точки проводят линию 2 под углом 15,2° к линии 1. Согласно формуле, задняя граница пяточной кости (точка d) должна находиться на линии 2 на расстоянии 35×4,59=160,7 мм от точки с.Если ось пяточной кости не совпадает с линией 2, и (или) точка d не соответствует задней кортикальной пластинке пяточной кости, выполняют планирование коррекции деформации. Для этого находят реальную ось пяточной кости и отмечают точку d1 месте пересечения оси пяточной кости с задней кортикальной пластинкой. Точка пересечения соответствующей норме оси и реальной оси является вершиной деформации. На этом уровне выполняют виртуальную остеотомию и коррекцию деформации.

Предложенные способы планирования коррекции деформаций среднего и заднего отделов стопы предполагают, что и величины поперечника пяточной кости, и головки 1-й плюсневой кости сохранены. Однако так бывает далеко не всегда, например, в случае "смятия" пяточной кости и(или) головки 1-й плюсневой кости при компрессионном переломе, врожденной патологии среднего и заднего отделов стопы. Для подобных ситуаций использовать предложенные способы невозможно.

Техническим результатом предлагаемого способа является возможность точно определить наличие деформации стопы в сагиттальной плоскости независимо от деформации среднего и(или) заднего ее отделов, установки стопы в голеностопном суставе, наличия деформации дистального отдела костей голени.

Технический результат достигается тем, что на сагиттальной боковой рентгенограмме стопы определяют переднюю и заднюю точки суставной поверхности блока таранной кости (а и b) и опорные (дистальные) точки пяточной кости и головки первой плюсневой кости. После этого эти четыре точки соединяют линиями (фиг. 1), образуя четырехугольник, где ab - его верхняя сторона, a dc - нижняя сторона четырехугольника. Далее на рентгенограмме находят следующие параметры:

1. Величины всех четыре углов:

2. Отношение длины верхнего основания к задней стороне:

3. Отношение верхней стороны к передней стороне:

4. Отношение верхней и нижней сторон: .

На фигурах изображены:

Фиг. 1. - схема построения четырехугольника стопы.

Фиг. 2. - референтные значения углов четырехугольника.

Фиг. 3. - референтные значения коэффициентов для определения длин сторон четырехугольника.

Фиг. 4. - построение должной механической оси 1-й плюсневой кости и определение должной точки ее пересечения с передним кортикальным слоем головки 1-й плюсневой кости.

Фиг. 5. - определение реальной механической оси 1-й плюсневой кости и точки ее пересечения с передним кортикальным слоем головки 1-й плюсневой кости.

Фиг. 6. - планирование коррекции деформации среднего отдела стопы.

Фиг. 7. - определение должной анатомической оси пяточной кости и точки ее пересечения с задним кортикальным слоем пяточной кости.

Фиг. 8. - определение реальной анатомической оси пяточной кости и точки ее пересечения с задним кортикальным слоем пяточной кости.

Фиг. 9. - планирование коррекции деформации заднего отдела стопы.

Фиг. 10. - построение должного четырехугольника стопы.

Фиг. 11. - уточнение коррекции стопы на основе четырехугольника.

Для получения значений коэффициентов были проанализированы 74 рентгенограммы недеформированных стоп людей в возрасте от 23 до 64 лет. Все рентгенограммы были выполнены с нагрузкой в боковой проекции.

При анализе рентгенограмм выясняли, под каким углом пересекается линии, образующие фигуру.

При этом были получены следующие данные (фиг. 2):

Массив полученных данных при определении коэффициентов соотношения сторон к отрезку ab, так же обработан статистически и представлен следующими данными (фиг. 3):

k1=ad/ab=1,71(±1,17)

k2=bc/ab=2,99(±0,8)

k3=3,9(±0,9)

При реализации способа по рентгенограмме определяют длину суставной линии блока таранной кости. Используя полученные референтные значения углов и длин сторон четырехугольника, строят четырехугольник таким, каким он должен быть при отсутствии деформации. Сравнивают этот должный четырехугольник с реальным, построенным по рентгенограмме пациента, если они не совпадают, то имеет место деформация. После коррекции деформации реальный и должный четырехугольники должны совпадать.

Клинический пример.

Пациентка Т., 18 лет, обратилась с жалобами на деформацию правой стопы. Были выполнены рентгенография и планирование коррекции деформации среднего отдела согласно известного способа (Соломин Л.Н., Уханов К.А., Бойченко А.В., Херценберг Дж. Анализ и планирование коррекции деформаций среднего отдела стопы в сагиттальной плоскости. Вестник хирургии им. И.И. Грекова. 2017; 176(5): 59-63) (фиг. 4-6). После этого было выполнено планирование коррекции деформации заднего отдела согласно известного способа (Соломин Л.Н., Уханов К.А., Сорокин Е.П., Херценберг Д. Анализ и планирование коррекции деформаций заднего отдела стопы в сагиттальной плоскости. Травматология и ортопедия России. 2017; 23(1):23-32) (фиг. 7-9). После этого, на основании измерения длины линии сустава блока таранной кости, равной 32 мм, построен должный (референтный) четырехугольник, в котором bc=32×2,99=95,68 мм; cd=32×3,9=124,8 мм; ad=32×1,71=54,72 мм. Этот должный четырехугольник наложен на схему планирования коррекции деформаций среднего и заднего отделов стопы (фиг. 10). При этом выяснено, что за счет того, что имеется дисплазия (недоразвитие) пяточной и 1-й плюсневой костей, произведенное на основе способов-прототипов планирование, не является точным. Выполнено совмещение точек с и d с опорными точками пяточной кости и головки 1-й плюсневой кости (фиг. 11).

Данное планирование позволило выполнить пациентки коррекцию сложной деформации стопы с восстановлением опорной функции н/конечности.

Способ определения наличия деформации стопы в сагиттальной плоскости, включающий определение на рентгенограмме стопы, выполненной в боковой проекции, точки «а», соответствующей заднему краю суставной поверхности блока таранной кости, и точки «b», соответствующей переднему краю, проведение через точки «а» и «b» линии и измерение ее длины, отличающийся тем, что определяют точку «с», соответствующую опорной точке головки 1-й плюсневой кости, и точку «d», соответствующую опорной точке пяточной кости, все точки соединяют, строят четырехугольник, где ab - верхняя сторона, a dc - нижняя сторона, используя референтные значения dab=103,2° (±7,2), abc=142,3° (±8,5), bcd=33,1° (±1,7), cda=81,1° (±8,6), k1=ad/ab=1,71 (±1,17), k2=bc/ab=2,99 (±0,8), k3=dc/ab=3,9 (±0,9), строят четырехугольник таким, каким он должен быть при отсутствии деформации стопы, сравнивают с реальным четырехугольником, построенным по рентгенограмме пациента, если они не совпадают, определяют наличие деформации.



 

Похожие патенты:

Тензоалгометрический блок системы управления роботизированным манипулятором относится к медицинской технике. Тензоалгометрический блок системы управления роботизированным манипулятором содержит индентор.

Изобретение относится к медицине, а именно, к стоматологии, лучевой и инструментальной диагностикам, и может быть использовано для комплексной диагностики окклюзии у пациентов.

Изобретение относится к области медицины, а именно к детской неврологии, предназначено для использования при прогнозировании формирования детского церебрального паралича к году жизни.

Группа изобретений относится к медицине, а именно к мониторингу пациентов и может быть использовано для мониторинга пациентов в подостром состоянии. Предложены медицинская система для реализации способа, содержащая: по меньшей мере один датчик, сконфигурированный для измерения состояния активности и/или положения тела пациента; по меньшей мере один датчик показателей жизнедеятельности пациента, сконфигурированный для измерения одного или более показателей жизнедеятельности пациента по графику, причем показатели жизнедеятельности пациента включают в себя одно или более из пульса, насыщения крови кислородом (SpO2), дыхания, артериального давления (NBP), температуры, уровня диоксида углерода; по меньшей мере, один процессор, запрограммированный с возможностью регулирования графика и мониторинга на предмет ухудшения состояния пациента на основании измеренного состояния активности и/или положения тела пациента и измеренного одного или более показателей жизнедеятельности пациента, отбрасывания результатов измерений показателей жизнедеятельности, когда соответствующее состояние активности и/или положение тела не согласуется с предварительно заданным состоянием активности и/или положением тела; задержки запланированного графиком измерения, пока состояние активности и/или положение тела не согласуется с предварительно заданным состоянием активности и/или положением тела, повторного измерения одного или более показателей жизнедеятельности пациента если численный показатель для одного или более показателей жизнедеятельности пациента ухудшился и/или улучшился по сравнению с предыдущей выборочной проверкой; адаптации схемы мониторинга к состоянию пациента на основании измеренного состояния активности и/или положения тела пациента и измеренного одного или более показателей жизнедеятельности, пациента за счет автоматического повышения частоты мониторинга в случае ухудшения состояния пациента; вычисления тренда положения тела; сравнения тренда положения тела с ожидаемым трендом положения тела; отображения показания, что тренд положения тела является таким, как ожидается, что тренд положения тела является не таким, как ожидается, и/или что следует выполнить действие, например, повернуть пациента, на основании тренда положения тела, формирования извещения о положении тела, содержащего признаки, выделенные из тренда положения тела в течение предварительно заданного периода времени, при достижении условий, представляющих собой достижение комбинации нескольких положений тела в течение предварительно заданного периода времени.

Изобретение относится к медицине, а именно к онкологии и онкопедиатрии, и может быть использовано для прогнозирования инфертильности у детей и подростков после риск-адаптированного лечения лимфомы Ходжкина (ЛХ).

Изобретение относится к медицинской технике. Дифференциальный диагностический измеритель жесткости мягких тканей с симметричных сторон позвоночника человека содержит щуп (1).

Изобретение относится к офтальмологии и может быть использовано для оценки биомеханических свойств края передней капсулы хрусталика после проведения непрерывного кругового капсулорексиса.

Группа изобретений относится к медицине и может быть использована для идентификации переходов между положением стоя и положением сидя пользователя. Устройство содержит постоянный машиночитаемый носитель, содержащий компьютерный программный код, который при выполнении на компьютере предписывает компьютеру выполнять способ определения переходов между положением стоя и положением сидя, причем устройство содержит: аппаратный процессор, выполненный с возможностью: обработки измерений ускорения, испытываемого пользователем для того, чтобы идентифицировать возможные движения, соответствующие переходам между положением стоя и положением сидя; определения идентифицированного возможного движения как перехода из положения сидя в положение стоя, где идентифицированное возможное движение совпадает с увеличением высоты в сигнале, указывающем высоту части тела пользователя во время движения, и определения идентифицированного возможного движения как перехода из положения стоя в положение сидя, где идентифицированное возможное движение совпадает с уменьшением высоты в сигнале, указывающем высоту части тела пользователя, при этом обработка измерений ускорения для идентификации возможных движений, соответствующих переходам между положением стоя и положением сидя, содержит сопоставление измерений ускорения с заданным профилем ускорения для перехода от сидения к стоянию, и сопоставление измерений ускорения с заданным профилем ускорения для перехода от сидения к стоянию содержит: фильтрацию измерения ускорения с помощью заданного профиля ускорения для того, чтобы произвести отфильтрованный в прямом направлении сигнал; переворот в обратном направлении отфильтрованного в прямом направлении сигнала; и фильтрацию перевернутого сигнала с помощью заданного профиля ускорения.

Группа изобретений относится к медицине, оценке риска падения пользователя при сердечно-сосудистых, двигательных, неврологических нарушениях. При осуществлении способа анализируют измерения ускорения пользователя для определения, выполнил ли пользователь переход из положения сидя в положение стоя.

Группа изобретений относится к восстановительной медицине, диагностике, вертебрологии. Определяют структурные изменения в отделах позвоночника путем измерения количественных параметров собственных упругих колебаний мышечно-связочных тканей позвоночника в ответ на силовое импульсно-толчковое ручное воздействие в данном отделе.

Изобретение относится к медицине, а именно к реабилитологии, и может быть использовано при оценке степени реабилитации с использованием активного экзоскелета у пациентов с нарушениями опорно-двигательного аппарата.

Группа изобретений относится к медицинской технике, а именно к игле для использования с приспособлением для забора и/или переноса крови или других текучих сред, характеризующейся геометрией кончика иглы, и более конкретно - геометрией игольного кончика с пятью скошенными кромками, а также к приспособлениям, содержащим такую иглу.

Изобретение относится к способу автоматического формирования базы данных анкетной информации при проведении эпидемиологических исследований. Технический результат заключается в автоматическом формировании базы данных анкетной информации.

Изобретение относится к измерительной технике и может быть использовано при мониторинге человека на опорной конструкции. Представлены сенсорное устройство и способ мониторинга человека сенсорным устройством, которое содержит измерительную электронику и сенсорную структуру (100), которые могут быть установлены на опорную конструкцию.

Группа изобретений относится к медицинской технике. Блок хемооптического датчика для чрескожного измерения концентрации газа содержит по меньшей мере один чувствительный слой, выполненный облучаемым заданным излучением; и по меньшей мере один газопроницаемый слой, прилегающий к одной стороне упомянутого по меньшей мере одного чувствительного слоя, выполненный с возможностью пропускать газ, концентрация которого подлежит измерению, через газопроницаемый слой к чувствительному слою.
Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для диагностики лекарственно индуцированного поражения печени у больных с неалкогольной жировой болезнью печени.

Изобретение относится к способу устранения особой ситуации при разгерметизации кабины самолета. Для устранения особой ситуации измеряют скорость изменения давления воздуха и абсолютное давление в герметической кабине и проверяют измеренные значения на соответствие определенному условию.

Группа изобретений относится к медицине. Способ обработки данных осуществляют с помощью устройства для обнаружения стадий стрессового состояния живого существа.

Изобретение относится к криминалистике, судебной медицине и может быть использовано для выявления следов, имеющих органическое происхождение, а именно следов пальцев и ладоней рук для проведения дактилоскопических исследований.
Изобретение относится к области экспериментальной медицины, а именно к моделированию флегмоны околочелюстной области, и может быть использовано при исследованиях, в частности для разработки способов лечения указанной патологии и оценки их эффективности.
Наверх