Способ и система управления продольным движением при разбеге по взлётно-посадочной полосе и наборе высоты беспилотного летательного аппарата со специально расположенными передними и задними крыльями

Группа изобретений относится к способу и системе управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата (БПЛА) с сочлененными на киле передними и задними крыльями. Для реализации способа формируют по результатам предварительного моделирования продольного движения БПЛА в блоке вычислений аналитические зависимости и значения всех параметров, необходимых при испытании модели, производят измерения необходимых параметров и выбор их для сглаживания колебания рулей и исключения кратковременных отрывов от ВПП, что обеспечивает при достижении достаточной подъемной силы быстрый набор высоты. Система управления содержит последовательно связанные корректирующие звенья контуров управления рулями передних и задних крыльев. Контур управления рулями задних крыльев содержит блок измерений, колебательное звено, нелинейное звено с зоной линейности и ограничением по угловой скорости, дифференцирующее звено, сумматор, апериодическое звено, нелинейное звено с зоной линейности и ограничение по рулю высоты. Контур управления рулями передним крыльев содержит блок вычислений, сравнивающее звено контура по углу атаки, усилитель по углу атаки, сумматор, апериодическое звено, нелинейное звено с зоной линейности и ограничением по рулю высоты, соединенные определенным образом. Обеспечивается повышение устойчивости ЛА на участке разбега по ВПП и при наборе высоты. 2 н.п. ф-лы, 7 ил.

 

Изобретения относятся к летным испытаниям (ЛИ) беспилотных авиационных комплексов способных решать задачи различного назначения, а именно, к способу управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата (БПЛА) с сочлененными на киле передними и задними крыльями и системе для его осуществления.

Создаваемые в настоящее время беспилотные авиационные комплексы могут быть различными по структурному составу, весовым и аэродинамическим характеристикам БПЛА, способам взлета и посадки. Разрабатываются, в том числе, крупногабаритные дистанционно - управляемые БПЛА.

В проектировании и создании БПЛА необходимым направлением работ является разработка системы автоматического управления (САУ) его движением. Полный цикл создания САУ БПЛА включает в себя несколько этапов. К ним, в частности, относится подготовка и проведение летных испытаний (ЛИ) САУ на участке взлета, посадки и пробега БПЛА по ВПП. В связи с тем, что траектория БПЛА содержит в себе различные режимы полета, в том числе, и движение по взлетно-посадочной полосе (ВПП) необходимо разрабатывать способы автоматического управления для каждого из них, но в тесной взаимосвязи с целью непрерывного процесса моделирования при выходе за пределы указанных участков.

В предлагаемых изобретениях рассматривается БПЛА с носовым колесом, который по своей аэродинамической схеме представляет ЛА с пространственной несущей системой (ПНС), образованной сочлененными на киле передними и задними крыльями. Такой ЛА имеет характерные особенности в распределении аэродинамических сил и моментов. Ставится задача разработать способы управления движением для обеспечения безопасного взлета, посадки таких БПЛА с самолетным стартом. К концу участка подъема необходимо обеспечить условия для перехода в режим дальнейшего крейсерского полета с требуемыми значениями высоты, скорости и параметров углового положения.

В описании патента «Самолет» RU 2165377 С1 рассматривается ЛА, в котором крыло выполнено в виде несущей пространственной системы, консоли которой состоят из трех планов, хорды их разнесены по длине и высоте фюзеляжа. Такая конструкция имеет большие отличия от аппарата с сочлененными на киле рулями высоты. В указанной работе рассматриваются в основном вопросы аэродинамической компоновки пространственной несущей системы, вопросы минимизации нагрузок и аэродинамические характеристики, а также прочности и снижения веса такой системы.

В работе «Development of Control Strategies for the Joined-Wing Aircraft» («Разработка стратегий управления для самолета с сочлененными крыльями») автора Bernardo Cunha института Superior Tecnico, av. RoviscoPais 1, 1049-001 Lisboa, Portuga 16, June 2011 рассматривается БПЛА с сочлененными крыльями. Излагается стратегия управления без руля направления, анализируются коэффициенты устойчивости с использованием программ численных методов аэрогидродинамики. Используется решетка квантования вихрей потока (программа XFOIL). Выделяются шесть управляющих поверхностей на переднем крыле и четыре - на заднем. По всей поверхности назначенной решетки вычисляется распределение давления, подробно анализируется метод корневых годографов. В результате такая необычная конфигурация объединяет задние и передние крылья и отождествляет структуру радара, интегрированного в фюзеляж. С привлечением методов теории управления оценивается эффективность управления. Далее вычисляются проекции сил на горизонтальную плоскость с учетом отклонений управляющих поверхностей.

В анализируемой работе рассмотрено достаточно подробно распределение сил по поверхности управляющих органов и использование их в управлении рысканием. В ней не описан способ поворота управляющих органов для управления в вертикальной плоскости на участке разбега по ВПП и набора высоты при условии существенного изменения коэффициентов статической устойчивости на указанных участках полета, что является основным критерием в предлагаемой заявке на патент.

Наиболее близким к заявляемым изобретениям являются материалы, изложенные в описании патента «Многоцелевой летательный аппарат» RU 2156717 С2, где рассматривается ЛА с крыльями, соединенными по своим концам пилонами. Такое соединение существенно изменяет конструкцию ЛА и вносит отличие в аэродинамические формы. Указанный ЛА существенно отличается от рассматриваемого в изобретениях. В описании патента рассмотрены в основном конструкторские решения в части распределения нагрузок и укрепления крыльев. Вопросы управления таким аппаратом ограничиваются только рассмотрением усилий на рулях.

Технический результат, на достижение которого направлено изобретение, заключается в управлении ЛА на всем участке разбега по ВПП при малом угле атаки при статической неустойчивости и на участке набора высоты БПЛА с малым запасом устойчивости в продольном движении, а также на участке статической устойчивости ЛА при переходе на большой угол атаки.

Для получения указанного технического результата в предлагаемом способе управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата с сочлененными на киле передними и задними крыльями, включающем формирование сигналов управления передними и задними крыльями, по результатам предварительного моделирования продольного движения БПЛА в блоке вычислений формируются аналитические зависимости и значения всех параметров, необходимых при испытании модели - плотность атмосферы, кинематическая вязкость, банк аэродинамических характеристик модели в зависимости от числа Маха и угла атаки, параметры модели - характерная площадь, размах крыльев и длина средней аэродинамической хорды, масса. Затем выставляют углы отклонения рулей передних и задних крыльев δВ10 и δВ50 в точке старта согласно расчетным значениям при моделировании с учетом балансировки и параметров корректирующих звеньев; производят измерения текущих значений высоты относительно поверхности ВПП при разбеге и высоты полета после отрыва от ВПП скорости, угла атаки, угловых ускорений относительно центра масс, для контроля измеряют углы скольжения и крена, реакции опор шасси при движении по ВПП. Формируют программу изменения угла атаки αзад, в которой угол атаки выбирается в соответствии с аэродинамическими характеристиками в результате предварительного моделирования, при прямом управлении углом атаки α осуществляется непосредственное управление изменением силовых и моментных аэродинамических характеристик ЛА, которые в явном виде зависят от угла атаки. Программу изменения угла атаки выбирают таким образом, чтобы выполнить начало разбега при минимальных лобовом сопротивлении и подъемной силе, для начального разбега при минимальной тяге двигателя в контур заднего руля δв5 подключают по выходному сигналу угловой скорости ωz колебательное звено, имеющее передаточную функцию где параметры колебательного звена Tk и ζ выбирают с учетом того, чтобы при заданном начальном уровне тяги двигателя обеспечивалось демпфирование угловой скорости ωz при трогании с места, возникающее запаздывание устраняется за счет подключения дифференцирующих звеньев с постоянными времени и , причем дифференцирующий сигнал получается за счет подключения измеренной угловой скорости ωz полученные сигналы по угловым скоростям и суммируются с углами поворота рулей δв10 и δв50, сигналы с сумматоров поступают на вход апериодических звеньев, которые служат для сглаживания колебания рулей и исключают возможность кратковременных отрывов БПЛА от ВПП, при достижении достаточной подъемной силы для отрыва передней стойки увеличивают угол атаки с целью быстрого набора высоты, угол атаки увеличивается до значения, близкого к балансировочному, чтобы при наборе высоты избежать резких колебаний и поворотов рулей на большие углы. Для реализации указанного принципа разбега углы поворота передних и задних рулей высоты δв10 и δв50 формируются по законам:

где - сигнал по угловой скорости ωz, отфильтрованный и ограниченный по величине, К - коэффициент усиления по углу атаки.

В моменты отрыва от ВПП передней и основных стоек шасси, а также переключения тяги двигателя переключаются угол атаки и углы отклонения рулей δв1 и δв5, за счет включения колебательного звена, дифференцирующих звеньев с разными постоянными времени и , апериодических звеньев с постоянными времени T1 и T5 достигается разное быстродействие в контурах рулей δв1 и δв5, контур с большим быстродействием δв1 отслеживает контур с меньшим быстродействием δв5, в итоге поддерживается суммарный момент тангажа mz≈0, и обеспечивается полет с углом атаки, близким к балансировочному, без существенных отклонений рулей и с небольшими колебаниями в короткопериодическом движении, при таком способе управления поддерживается устойчивость и управляемость БПЛА при разбеге и наборе высоты в широком диапазоне изменения углов атаки, высоты и скорости.

Для достижения названного технического результата в предлагаемой системе управления продольным движением при разбеге по ВПП и наборе высоты БПЛА с сочлененными на киле передними и задними крыльями, включающей в себя последовательно связанные корректирующие звенья контуров управления передними и задними крыльями, в контур управления рулями задних крыльев включены последовательно связанные блок измерений, колебательное звено с передаточной функцией нелинейный элемент с зоной линейности и ограничением по угловой скорости на выходе которого получаем сигнал , дифференцирующее звено с постоянной времени , сумматор , апериодическое звено с постоянной времени Т5, нелинейное звено с зоной линейности и ограничением по рулю высоты δB5, на выходе которого получаем величину угла отклонения рулей , а контур управления передним рулем содержит последовательно связанные звенья, включающие в себя блок вычислений, сравнивающее звено контура по углу атаки (α-αзад), усилитель с коэффициентом усиления по углу атаки K, сумматор по углам отклонения передних рулей δB1 апериодическое звено с постоянной времени Т1, нелинейное звено с зоной линейности и ограничением по рулю высоты, на выходе которого получаем величину угла отклонения рулей δВ1ф, при этом выходы нелинейных звенев с зонами линейности и ограничениями по рулям высоты соединены с входами БПЛА и входами блока вычислений; два выхода блока вычислений соединены с входами сумматоров по углам отклонения рулей δB10 и δВ50, а третий вход сумматора по углу отклонения руля δВ10 соединен через дифференцирующее звено с постоянной времени с выходом нелинейного элемента с зоной линейности и ограничением по угловой скорости третий выход блока вычислений сигнала переключения уровня тяги двигателя соединен с входом БПЛА, и блок измерений дополнительно соединен выходом с входом сравнивающего звена контура по углу атаки.

Предлагаемые изобретения иллюстрируются чертежами.

На фиг. 1 приведена компоновочная схема модели ЛА:

1 - руль высоты внутренний переднего крыла,

2 - руль высоты внешний переднего крыла,

3 - элерон,

4 - руль высоты внешний заднего крыла,

5 - руль высоты внутренний заднего крыла.

На фиг. 2 показан ЛА в двух проекциях.

На фиг. 3 показан график изменения аэродинамического качества в зависимости от угла атаки α, где:

6 - аэродинамическое качество K(α).

ЛА имеет достаточно большое максимальное аэродинамическое качество (K(α)≈25) при α≈4°; при нулевом значении α аэродинамическое качество К(α)≈17.5.

На фиг. 4 изображена поляра Суаха):

7 - поляра Суаха),

где Сха - аэродинамический коэффициент лобового сопротивлении,

Суа - аэродинамический коэффициент подъемной силы.

Поляра Суаха) приближается к оси ординат до Сха≈0.02.

На фиг. 5 изображен график изменения коэффициента момента тангажа mz в зависимости от угла атаки α:

8 - mz(α).

Как видно из этого рисунка, в диапазоне углов α=2÷5° коэффициент mz практически не изменяется, т.е., - ЛА статически нейтральный, при углах атаки α<2° производная - ЛА неустойчив; при углах атаки α>5° - движение устойчиво.

Структурная схема предлагаемой системы для управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата с сочлененным на киле передними и задними крыльями показана на фиг. 6 и содержит:

9 - блок измерений;

10 - колебательное звено;

11 - нелинейное звено с зоной линейности и ограничением по угловой скорости;

12 - постоянную времени Тωz5;

13 - апериодическое звено с постоянной времени Т5;

14 - нелинейное звено - ограничение по углу поворота руля высоты δв5;

15 - постоянную времени Tωz1;

16 - БПЛА - объект управления;

17 - блок вычислений;

18 - коэффициент усиления по углу атаки;

19 - апериодическое звено с постоянной времени Т1;

20 - нелинейное звено - ограничение по углу поворота руля высоты δв1.

На фиг. 7 показаны графики изменения параметров продольного движения БПЛА при разбеге и взлете.

21 - угол атаки α;

22 - тяга двигателя Р;

23 - приращение коэффициента момента Δmzв5);

24 - приращение коэффициента момента Δmzв1);

25 - угол отклонения руля высоты δв1;

26 - угол отклонения руля высоты δв5;

27 - скорость V;

28 - высота Н;

29 - угловая скорость тангажа wz;

30 - коэффициент момента аэродинамических сил mz;

31 - реакция опоры N1;

32 - реакции опор N2,3.

Пример.

Существенные особенности аэродинамических характеристик, силовых и моментных, приводят к необходимости пересмотра общепринятых законов управления при разбеге по ВПП и наборе высоты.

ЛА имеет большое максимальное аэродинамическое качество: K(α)≈25 при α≈4°; при α=0°- К(α)≈17.5, Су≈0.35. Кроме того, ЛА имеет максимальный коэффициент подъемной силы при сравнительно малом угле атаки - критическое значение α≈14° (фиг. 3-4). Это первая существенная особенность аэродинамических характеристик.

Из этих данных следует, что ЛА имеет достаточно большую подъемную силу даже при малых углах атаки, что приведет к отрыву от ВПП при малой скорости и возможному аварийному взлету. Поэтому при разработке способа управления в структуре системы таким ЛА следует предусматривать поворот рулей высоты в сторону уменьшения угла атаки и подъемной силы. Величина угла атаки устанавливается по начальному значению угла тангажа за счет отклонения рулей высоты в соответствии с заданными моментными характеристиками и результатами моделирования.

Вторая особенность - при малых углах атаки ЛА статически неустойчив. В диапазоне углов α=2÷5° коэффициент mz практически не изменяется, т.е., - ЛА статически нейтральный. При углах атаки α<2° - ЛА неустойчив. При углах атаки α>5° - движение устойчиво или с малым запасом устойчивости (фиг. 5).

В соответствии с указанными замечаниями необходимо на участке разбега по ВПП задние рули высоты повернуть на одинаковые углы, чтобы ЛА «прижать» к ВПП.

В способе управления продольным движением при разбеге по ВПП и наборе высоты БПЛА с сочлененными на киле передними и задними крыльями для начального разбега с недостаточной тягой двигателя подключают колебательное звено по угловой скорости в контуре управления δв5, а запаздывание, которое возникает при подключении колебательного звена, устраняют за счет работы опережающих звеньев.

При недостатке тяги двигателя в таком режиме разбега подключают колебательное звено по угловой скорости, что позволяет в вибрационном режиме с выбранной частотой осуществить трогание с места и начальный разбег в режиме минимальной тяги. Это равноценно эффекту при трогании с места тяжелого груза. Для устранения запаздывания при включении колебательного звена включены опережающие дифференцирующие звенья с постоянными времени Tωz1 и Tωz5. Включение звеньев в контур сигнала ωz равносильно включению дифференцирующего звена по углу атаки или тангажа. Подключение сигнала непосредственно по ωz позволяет исключить дополнительную операцию численного дифференцирования угла атаки и уменьшить запаздывание в системе.

Подключение звеньев позволяет получить сигнал во временной области без решения дифференциального уравнения первого порядка за счет аппаратурной реализации, такое решение позволяет исключить присущие цифровым системам временное запаздывание и разделить демпфирующие сигналы путем выбора значений .

При отрыве передней стойки от ВПП за счет поворота рулей высоты осуществляется ступенчатый переход на угол атаки α≈5°. Такое переключение выполняется с целью набора высоты при увеличении траекторного угла и перехода в область устойчивости. За счет такого маневра создается приращение вертикальной скорости, и осуществляется набор высоты после отрыва от ВПП. Для уменьшения лобового сопротивления и компенсации потери скорости при увеличении угла атаки дальнейший набор высоты осуществляется при медленном уменьшении угла атаки и увеличении тяги двигателя. При таком маневре устанавливается режим набора высоты без существенных колебаний в короткопериодическом движении и в движении центра масс.

Таким образом, указанные особенности аэродинамических характеристик приводят к необходимости выбирать траекторию полета при отклонении рулей в диапазоне, близком к номинальному балансировочному, чтобы не допустить, прежде всего, больших отклонений параметров углового движения от расчетных и потери устойчивости движения центра масс при заданных моментных характеристиках. Такой подход позволяет реализовывать траектории с достаточно точными угловыми отклонениями и малыми колебаниями, с необходимыми запасами высоты и скорости. Углы отклонения рулей δв1 и δв5 должны быть согласованы с переключением тяги двигателя и отрывом стоек шасси от ВПП. При этом рассматривается только продольное движение, так как анализ аэродинамических характеристик и результаты моделирования показали, что при заданных характеристиках (частные производные по углу скольжения β от коэффициентов момента крена и момента рыскания) имеется достаточный запас устойчивости в боковом движении, что позволяет для решения поставленной задачи рассматривать только продольный контур.

Способ управления в соответствии с структурной схемой на фиг. 6. осуществляется следующим образом.

Законы управления рулями высоты δв1 и δв5 выражаются как:

где

Значение ω ограничивается на нелинейном элементе системы, имеющем зону нелинейности и ограничение.

Программа изменения угла атаки задается в следующем виде: αзад=0° - при движении по ВПП и αзад=5° -с момента отрыва от ВПП.

Сигнал проходит через апериодические фильтры:

Параметры всех звеньев с моментами переключения отражены в результатах моделирования (фиг. 7).

При включении таких звеньев в переходных процессах демпфируются скачки управляющих сигналов при подаче их в контур управления, а далее реализуются переходные процессы апериодических звеньев с постоянными времени T1 и Т5 при движении по ВПП и наборе высоты. В итоге работу рулей δв1 и δв5 можно осуществить с разным быстродействием на указанных участках.

Результаты моделирования показали, что настройки системы должны определяться с достаточно высокой точностью, прежде всего углы отклонения рулей высоты. Это обусловлено статической неустойчивостью движения ЛА или малым запасом устойчивости при малых углах атаки.

Первоочередная задача при разгоне по ВПП - не допустить возникновения высокочастотных колебаний, превышающих частоту, заданную колебательным звеном, и преждевременного отрыва ЛА от ВПП. Чтобы предотвратить их появление на руль δв1 подается сигнал с большой величиной постоянной времени Тωz1. За счет этого руля высоты создается дополнительный отрицательный момент на пикирование, чтобы прижать ЛА к ВПП. Необходимо повернуть рули на углы, создающие суммарный момент mz≈0. Так как рули расположены по разные стороны относительно центра масс, то они создадут дополнительные моменты разных знаков. Их необходимо уравновесить.

Рассматриваемый БПЛА имеет следующую особенность: приращение Δmz1 более чувствительно к изменению угла атаки, чем Δmz5. В частности, при δв5=-10° разброс Δmz5(α)≈0.12, при δв1=-10° разброс Δmz1(α)≈0.2.

Из этого анализа следует, что управление углом атаки следует возложить на руль δв1, а на руль δв5 - демпфирование колебаний при возмущениях в моменты переключений управляющих сигналов. С этой целью в канал δв5 следует включить апериодическое звено , Т5=5 с, а в канал δв1 - Т1=0,02 с. Таким образом, канал с большим быстродействием будет отслеживать канал меньшим быстродействием и поддерживать суммарный момент тангажа mz≈0. Такое взаимодействие рулей позволяет осуществить управление ЛА на всем участке пробега по ВПП и на участке набора высоты.

На фиг. 7 показаны изменения параметров траектории в продольном движении, принятые за номинальные, соответствующие изменению моментов и отклонению рулей.

В дальнейшем полете можно перейти на большие углы атаки, где будут использованы другие моментные характеристики.

В результате анализа получено, что при указанном способе взаимодействия рулей высоты и выбранных настройках корректирующих звеньев системы управления БПЛА выводится на высоту Н≈70 м при скорости V≈20 м/с. Разгон осуществляется без значительных колебаний в траекторном движении. Заметны колебания по угловой скорости ωz при отрыве основных стоек шасси и переключении режимов работы двигателя - при t=40 с и t=65 с. Используется электрический двигатель, тяга которого изменяется в диапазоне Р=3÷5 кГ.

Потребные отклонения рулей высоты δв1и δв5 относительно выбранных значений невелики, что позволяет вывести ЛА в допустимый диапазон по высоте и скорости практически при постоянных углах отклонения рулей. Производится только одно переключение руля высоты δв50 при изменении режима работы двигателя в момент t=65 с, чтобы уменьшить колебания в системе при ступенчатом изменении тяги двигателя. Такой результат подтверждает ранее указанную реализацию функции управления между рулями δв1 и δв5.

Проведено моделирование при разбросе времени переключения двигателя и отклонении аэродинамического качества ЛА на 5%. Моделирование показало, что параметры траектории практически не изменяются при действии указанных достаточно больших и существенных возмущений. Имеются небольшие отклонения в изменении промежуточных параметров, в частности, изменение вертикальной скорости при изменении режима работы двигателя.

Таким образом, достигается решение задачи взаимодействия рулей ЛА для обеспечения его управляемости и устойчивости движения без существенных колебаний в короткопериодическом движении на участке разгона по ВПП и набора высоты.

В соответствии со схемой, представленной на (фиг. 6), по результатам предварительного математического моделирования системы управления ЛА в блоке вычислений (17) формируются все необходимые аналитические зависимости и значения всех необходимых параметров при испытании модели: плотность атмосферы, кинематическая вязкость, начальные условия в точке старта модели, банк аэродинамических характеристик модели в зависимости от числа Маха и угла атаки, параметры модели - характерная площадь, размах крыльев и длина средней аэродинамической хорды, масса, выставляют углы отклонения рулей δB10 и δB50 в точке старта согласно расчетным значениям при моделировании с учетом балансировки и параметров корректирующих звеньев.

В процессе ЛИ модели в блоке измерений (9) производят измерения текущих значений высоты относительно поверхности ВПП при разбеге и высоты полета после отрыва от ВПП, скорости, углов атаки, углового ускорения относительно центра масс, для контроля измеряют углы скольжения и крена, реакции опор шасси при движении по ВПП. В результате выполнения указанных процедур находят требуемые расчетные значения углов поворота рулей высоты в блоке вычислений (17). Вычисленные значения поступают на вход электрического привода БПЛА (16) (привод на схеме не показан) в каналах управления рулями высоты δВ1 и δВ5. В итоге получаем траекторию движения на участке разбега по ВПП и набора высоты для ЛА, имеющего моментные аэродинамические характеристики с участками статической неустойчивости. Разбег и набор высоты происходит без существенных колебаний в короткопериодическом движении.

Предложенный способ позволяет реализовать траекторию с учетом особенностей аэродинамических характеристик в виде двух характерных участков: разгон по ВПП на участке статической неустойчивости при малом угле атаки с целью достижения максимально возможного запаса скорости и набор высоты с переходом на большой угол атаки для достижения максимальной высоты на участке статической устойчивости ЛА.

Результаты исследования отражены на фиг. 7, где показаны изменения по времени основных параметров траектории БПЛА и реакции опор N1, N2,3 при использовании предложенного способа. При этом учитываются особенности силовых и моментных аэродинамических характеристик. ЛА статически неустойчив в продольной плоскости на малых углах атаки - α<2°, нейтрально устойчив в диапазоне α=2°÷5° и статически устойчив - при α>5°, передние и задние крылья имеют между собой существенные различия в аэродинамических характеристиках рулей высоты, в частности, руль δв1 на переднем крыле более чувствителен к изменению угла атаки.

Предлагаемая система для управления продольным движением при разбеге по ВПП и наборе высоты БПЛА с сочлененными на киле передними и задними крыльями включает в себя последовательно связанные корректирующие звенья контуров управления передними (1) и задними крыльями (5); контур управления задними рулями включает в себя колебательное звено (10) нелинейный элемент с зоной линейности и ограничением (11), дифференцирующее звено (12) с постоянной времени , сумматор , апериодическое звено (13) с постоянной времени T5, нелинейное звено с зоной линейности и ограничением по угловой скорости ωZ (14), на выходе которого получаем величину угла отклонения рулей а контур управления передним рулем содержит последовательно связанные звенья, включающие в себя блок вычислений (17), сравнивающее звено контура по углу атаки (α-αзад), усилитель с коэффициентом усиления по углу атаки (18) K, сумматор по углам отклонения рулей, постоянную времени Т ω (19), апериодическое звено (20) с постоянной времени T1, нелинейное звено с зоной линейности и ограничением по рулю высоты (20), на выходе которого получаем величину угла отклонения рулей, выходы нелинейных звеньев подключены к входам блока вычислений (17) и БПЛА (16).

Система работает следующим образом. С помощью системы управления БПЛА осуществляют разбег и взлет по сигналам прямого управления углом атаки, углами поворота передних и задних рулей высоты определенные по формулам (1), (2) после расчетов в блоке вычислений (17), сравнения заданного угла атаки и измеренного с учетом коэффициента усиления разности сигналов углов атаки.

В момент отрыва от ВПП передней и основных стоек шасси, а также переключения тяги двигателя переключают угол атаки и углы отклонения рулей δв1 и δв5 за счет включения колебательного звена (10) по угловой скорости, дифференцирующих звеньев с разными постоянными времени (12), (15) и , апериодических звеньев с постоянными времени (13), (19) T1 и Т5 достигается разное быстродействие в контурах рулей δв1 и δв5, контур с большим быстродействием δв1 отслеживает контур с меньшим быстродействием δв5, в итоге поддерживается суммарный момент тангажа mz≈0, и обеспечивается полет с углом атаки, близким к балансировочному, без существенных отклонений рулей и с небольшими колебаниями в короткопериодическом движении, при таком способе управления поддерживается устойчивость и управляемость БПЛА при разбеге и наборе высоты в широком диапазоне изменения углов атаки, высоты и скорости. Включение звеньев в контур сигнала ωz равносильно включению дифференцирующего звена по углу атаки или тангажа, подключение сигнала непосредственно по ωz позволяет исключить дополнительную операцию численного дифференцирования угла атаки и устранить чистое запаздывание на один такт блока вычислений, что позволяет уменьшить ошибки отработки сигнала управления.

1. Способ управления продольным движением при разбеге по взлетно-посадочной полосе (ВПП) и наборе высоты беспилотного летательного аппарата (БПЛА) с сочлененными на киле передними и задними крыльями, включающий формирование сигналов управления передними и задними крыльями, отличающийся тем, что по результатам предварительного моделирования продольного движения БПЛА в блоке вычислений формируются аналитические зависимости и значения всех параметров, необходимых при испытании модели - плотность атмосферы, кинематическая вязкость, банк аэродинамических характеристик модели в зависимости от числа Маха и угла атаки, параметры модели - характерная площадь, размах крыльев и длина средней аэродинамической хорды, масса; затем выставляют углы отклонения рулей передних и задних крыльев δB10 и δB50 в точке старта согласно расчетным значениям при моделировании с учетом балансировки и параметров корректирующих звеньев; производят измерения текущих значений высоты относительно поверхности ВПП при разбеге и высоты полета после отрыва от ВПП, скорости, угла атаки, угловых ускорений относительно центра масс, для контроля измеряют углы скольжения и крена, реакции опор шасси при движении по ВПП; формируют программу изменения угла атаки αзад, в которой угол атаки выбирается в соответствии с аэродинамическими характеристиками в результате предварительного моделирования, при прямом управлении углом атаки α осуществляется непосредственное управление изменением силовых и моментных аэродинамических характеристик ЛА, которые в явном виде зависят от угла атаки, программу изменения угла атаки выбирают таким образом, чтобы выполнить начало разбега при минимальных лобовом сопротивлении и подъемной силе, для начального разбега при минимальной тяге двигателя в контур заднего руля δв5 подключают по выходному сигналу угловой скорости ωz, колебательное звено, имеющее передаточную функцию , где параметры колебательного звена Tk и ζ выбирают с учетом того, чтобы при заданном начальном уровне тяги двигателя обеспечивалось демпфирование угловой скорости ωz, при трогании с места, возникающее запаздывание устраняется за счет подключения дифференцирующих звеньев с постоянными времени и , причем дифференцирующий сигнал получается за счет подключения измеренной угловой скорости ωz, полученные сигналы по угловым скоростям и суммируются с углами поворота рулей δв10 и δв50, сигналы с сумматоров поступают на вход апериодических звеньев, которые служат для сглаживания колебания рулей и исключают возможность кратковременных отрывов БПЛА от ВПП, при достижении достаточной подъемной силы для отрыва передней стойки увеличивают угол атаки с целью быстрого набора высоты, угол атаки увеличивается до значения, близкого к балансировочному, чтобы при наборе высоты избежать резких колебаний и поворотов рулей на большие углы, для реализации указанного принципа разбега углы поворота передних и задних рулей высоты δв10 и δв50 формируются по законам:

,

,

,

где - сигнал по угловой скорости ωz, отфильтрованный и ограниченный по величине, K - коэффициент усиления по углу атаки;

в моменты отрыва от ВПП передней и основных стоек шасси, а также переключения тяги двигателя переключаются угол атаки и углы отклонения рулей δв1 и δв5, за счет включения колебательного звена, дифференцирующих звеньев с разными постоянными времени и , апериодических звеньев с постоянными времени Т1 и Т5 достигается разное быстродействие в контурах рулей δв1 и δв5, контур с большим быстродействием δв1 отслеживает контур с меньшим быстродействием δв5, в итоге поддерживается суммарный момент тангажа mz≈0 и обеспечивается полет с углом атаки, близким к балансировочному, без существенных отклонений рулей и с небольшими колебаниями в короткопериодическом движении, при таком способе управления поддерживается устойчивость и управляемость БПЛА при разбеге и наборе высоты в широком диапазоне изменения углов атаки, высоты и скорости.

2. Система управления продольным движением при разбеге по ВПП и наборе высоты БПЛА с сочлененными на киле передними и задними крыльями, включающая в себя последовательно связанные корректирующие звенья контуров управления передними и задними крыльями, отличающаяся тем, что в контур управления рулями задних крыльев включены последовательно связанные блок измерений, колебательное звено с передаточной функцией , нелинейный элемент с зоной линейности и ограничением по угловой скорости , на выходе которого получаем сигнал , дифференцирующее звено с постоянной времени , сумматор , апериодическое звено с постоянной времени Т5, нелинейное звено с зоной линейности и ограничением по рулю высоты δB5, на выходе которого получаем величину угла отклонения рулей , а контур управления передним рулем содержит последовательно связанные звенья, включающие в себя блок вычислений, сравнивающее звено контура по углу атаки (α-αзад), усилитель с коэффициентом усиления по углу атаки K, сумматор по углам отклонения передних рулей δB1, апериодическое звено с постоянной времени T1, нелинейное звено с зоной линейности и ограничением по рулю высоты, на выходе которого получаем величину угла отклонения рулей δB1ф, при этом выходы нелинейных звенев с зонами линейности и ограничениями по рулям высоты и соединены с входами БПЛА и входами блока вычислений; два выхода блока вычислений соединены с входами сумматоров по углам отклонения рулей δB10 и δВ50, а третий вход сумматора по углу отклонения руля δB10 соединен через дифференцирующее звено с постоянной времени с выходом нелинейного элемента с зоной линейности и ограничением по угловой скорости , третий выход блока вычислений сигнала переключения уровня тяги двигателя соединен с входом БПЛА, и блок измерений дополнительно соединен выходом с входом сравнивающего звена контура по углу атаки.



 

Похожие патенты:

Изобретение относится к области информационно-измерительной техники. Технический результат заключается в обеспечении приема сигналов от датчиков.

Группа изобретений относится к устройству и способу управления движением для транспортного средства. Устройство содержит: первый детектор, второй детектор и контроллер.

Группа изобретений относится к способу управления движением транспортного средства, осуществляемого посредством устройства управления движением. Устройство управления движением содержит: первое средство обнаружения, выполненное с возможностью обнаруживать помеху рядом с транспортным средством, движущимся в первой полосе движения; и второе средство обнаружения, выполненное с возможностью обнаруживать вторую полосу движения, смежную с первой полосой движения.

Изобретение относится к способу устранения особой ситуации при разгерметизации кабины самолета. Для устранения особой ситуации измеряют скорость изменения давления воздуха и абсолютное давление в герметической кабине и проверяют измеренные значения на соответствие определенному условию.

Группа изобретений относится к способу взаимосвязи органов пилотирования, устройству взаимосвязи между органами пилотирования, устройству пилотирования и воздушному судну, содержащему устройство пилотирования.

Группа изобретений относится к способу и устройству управления движением транспортного средства. Способ осуществляется посредством устройства управления движением.

Изобретение относится к области судовождения, к автоматическому управлению движением судна-катамарана с двумя винторулевыми колонками (ВРК) при осуществлении им «сильных» маневров.

Группа изобретений относится к виртуальной карте транспортного средства. Транспортное средство включает в себя: двигатель(и), локальные датчики, процессор(ы).

Изобретение относится к определению местоположения транспортных средств. Техническим результатом является повышение точности определения местоположения транспортного средства в условиях слабого сигнала для основанных на спутниках систем определения местоположения (например, GPS) / приема GPS с вспомогательными средствами (aGPS).

Группа изобретений относится к двум системам интегрирования и индикации данных об угловом пространственном положении и способу определения ложного решения в отношении углового пространственного положения воздушного судна.

Изобретение относится к авиации. Летательный аппарат с дополнительным сбрасываемым крылом содержит фюзеляж, хвостовое оперение, двигатель, основное крыло и дополнительное сбрасываемое крыло с топливным баком.

Изобретение относится к области авиационной техники, в частности к конструкциям винтокрылых летательных аппаратов. Скоростной гибридный винтокрыл (СГВК) имеет на концах консолей крыла несущие винты с редукторами, двигатели силовой установки (СУ), связанные соединительными валами, которые приводят во вращение пропеллеры и несущие винты, фюзеляж и хвостовое оперение.

Изобретение относится к транспортным средствам на динамической воздушной подушке и касается экранопланов. Экраноплан содержит фюзеляж, шасси, вертикальное оперение, крылья, двигатели.

Изобретение относится к летательным аппаратам вертикального взлета и посадки. Летательный аппарат содержит фюзеляж, подвешенный с помощью нескольких стальных тросов к гирлянде, состоящей из множества аэродинамических крыльев, равномерно разнесенных по вертикали, и приводимый в поступательное движение конвертопланом, присоединенным к верхнему крылу гирлянды.

Изобретение относится к авиации, а именно к летательным аппаратам вертикального взлета и посадки. Летательный аппарат содержит фюзеляж, подвешенный с помощью нескольких стальных тросов к гирлянде, состоящей из множества аэродинамических крыльев, расположенных по вертикали на расстояниях не меньше длины хорды крыла, и приводимый в поступательное движение вертолетом, присоединенным к верхней части гирлянды.

Изобретение относится к области авиации. Летательный аппарат содержит фюзеляж, подвешенный с помощью нескольких стальных тросов к гирлянде, состоящей из множества аэродинамических крыльев, равномерно разнесенных по вертикали, и приводимой в поступательное движение дирижаблем.

Группа изобретений относится к боевой авиации. Первый вариант штурмовика представляет вооруженный летательный аппарат, который имеет пушку, направленную в один бок под углом до +- 45 градусов по горизонтали.

Изобретение относится к летательным транспортным средствам многоцелевого назначения. Летательный аппарат, создающий подъемную силу, содержит несколько аэродинамических модулей, расположенных последовательно друг за другом так, что входящий поток одного собирает выходящий поток предыдущего.

Изобретение относится к авиации. Сверхзвуковой преобразуемый самолет содержит фюзеляж (3), трапециевидное ПГО, стабилизатор (7), силовую установку, включающую два турбореактивных двухконтурных двигателя форсажных в гондолах, размещенных по обе стороны от оси симметрии и между килями (18), смонтированных на конце фюзеляжа (3) на верхних и боковых его частях.

Изобретение относится к транспортным летательным средствам многоцелевого назначения. Модуль летательного аппарата, создающий подъемную силу, содержит несколько однотипных блоков, установленных горизонтально так, что один параллелен другому с разворотом на 180 градусов.

Система автоматического управления беспилотным летательным аппаратом по углу крена содержит три сумматора, исполнительное устройство, датчик угловой скорости, датчик угла крена, дифференциатор, интегратор, пять усилителей, соединенные определенным образом.
Наверх