Способ гидрометаллургической переработки полиметаллического концентрата электронного лома

Изобретение относится к области металлургии цветных металлов и может быть использовано при переработке техногенного сырья, в частности электронного лома. Способ гидрометаллургической переработки полиметаллического концентрата электронного лома с извлечением драгоценных металлов включает извлечение меди и золота, при этом извлечение меди проводят в n стадий медно-аммиачным раствором сульфатетроаммина меди концентрацией 20–40 г/л по меди при комнатной температуре и соотношении полиметаллического концентрата к раствору сульфатетроаммина меди не менее 1:10, причем количество стадий n определяют заданной степенью извлечения меди, извлечение золота проводят посредством йод-йодидной технологии, а полученный раствор с растворенной медью отправляют в электролизер на регенерацию для осаждения меди. Регенерированный раствор сульфатетроаммина меди возвращают на стадию извлечения меди. Техническим результатом изобретения является упрощение способа. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии цветных металлов и может быть использовано на предприятиях, специализирующихся на извлечении цветных, благородных металлов и их сплавов, получаемых при переработке техногенного сырья, в частности электронного лома.

Известен способ переработки электронного лома на основе меди, содержащего благородные металлы [RU 2486263 C1, МПК C22B7/00 (2006.01), опубл. 27.06.2013]. По этому способу электронный лом подвергают окислительной плавке до получения сплава с содержанием меди 55-85 мас.%, и после электрохимически растворяют в сульфатном растворе при напряжении на электродах 0,8-1,5 В получают шлам, содержащий золото и серебро, и на катоде сплава, содержащего медь и палладий, который подвергают электрохимическому растворению в сульфатном растворе меди при напряжении на электродах 0,3-0,5 В с получением меди на катоде и шлама, содержащего палладий, при этом полученные шламы без смешивания выщелачивают серной кислотой.

Способ является трудно реализуемым, так как для его осуществления необходимо использование кислотосодержащих растворов, а также сложных пирометаллургических процессов.

Известен способ утилизации медьсодержащих отходов [RU 2559076 C1, МПК C22B7/00 (2006.01), опубл., 10.08.2015], включающий обезжиривание стружки, промывку в воде, сушку, растворение меди погружением корзины с ломом в медно-кальциевый сплав в процессе электролиза кальция при температуре 650–715°С и последующего вакуумного отжига при температуре 720-750°С.

Способ трудно реализуем, так как для его осуществления необходима длительная подготовка материала, а также требуется использование сложных пирометаллургических процессов.

Известен способ переработки отходов электронной и электротехнической промышленности [RU 2502813 C1, МПК (2006.01) C22B7/00, C22B11/00, C22B25/06, C22B3/00 опубл. 27.12.2013], выбранный в качестве прототипа, включающий растворение оловянного припоя 5-20%-ным раствором метансульфоновой кислоты с добавкой окислителя при температуре 70-90°C в течение двух часов, причем окислитель подают порционно до достижения окислительно-восстановительного потенциала среды не более 250 мВ. Затем отделяют навесные и бескорпусные детали микросхем на сетке, отмывают их от захваченной суспензии, сушат, измельчают до крупности 0,5 мм, разделяют на магнитном сепараторе на две фракции - магнитную и немагнитную, и перерабатывают их пофракционно гидрометаллургическими методами. Оставшуюся суспензию метаоловянной кислоты в растворе метансульфоновой кислоты с примесями золота и свинца коагулируют при кипячении в течение 30-40 мин, фильтруют, отфильтрованный осадок промывают горячей водой, сушат и прокаливают до получения золотосодержащего диоксида олова с последующим извлечением из него золота. Из фильтрата осаждают сульфат свинца. Образующуюся суспензию фильтруют. Фильтрат метансульфоновой кислоты после корректировки повторно используют на стадии растворения оловянного припоя.

При осуществлении этого способа используют кислоты, что экологически небезопасно. Процессы переработки протекают при повышенных температурах, что так же небезопасно.

Целью данного изобретения является разработка способа гидрометаллургической переработки полиметаллического концентрата электронного лома, позволяющего селективно извлекать медь при комнатной температуре без использования кислот с замкнутым циклом оборота растворов сульфатетроаммина меди, используя химические реактивы не токсичные для человека и окружающей среды. Задачей заявляемого изобретения является упрощение способа.

Указанная цель достигается тем, что способ гидрометаллургической переработки полиметаллического концентрата электронного лома с извлечением драгоценных металлов включает извлечение меди и золота, при этом извлечение меди проводят в n стадий медно-аммиачным раствором сульфатетроаммина меди концентрацией 20–40 г/л по меди при комнатной температуре и соотношении полиметаллического концентрата к раствору сульфатетроаммина меди не менее 1:10, причем количество стадий n определяют заданной степенью извлечения меди, извлечение золота проводят посредством йод-йодидной технологии, а полученный раствор с растворенной медью отправляют в электролизер на регенерацию для осаждения меди. Регенерированный раствор сульфатетроаммина меди возвращают на стадию извлечения меди.

Техническими результатами являются:

– упрощение способа переработки лома;

- селективное извлечение меди;

- экологическая безопасность способа.

Предложенный способ переработки электронного лома включает гидрометаллургическую переработку электронного лома после его измельчения и получения полиметаллического концентрата с дальнейшим извлечением цветных металлов и золота.

Измельченный электронный лом (полиметаллический концентрат) без стеклотекстолита и содержащий драгоценные и цветные металлы, керамические включения, направляют на гидрометаллургическую переработку для извлечения меди в n стадий медно-аммиачным раствором сульфатетроаммина меди концентрацией 20–40 г/л по меди при комнатной температуре и соотношении полиметаллического концентрата к раствору сульфатетроаммина меди, как 1:10. Количество стадий n определяют заданной степенью извлечения меди. Затем полученные растворы после каждой стадии отправляют в электролизер на регенерацию для осаждения меди. Регенерированные растворы возвращают на гидрометаллургическую переработку лома. Обезмеженный полиметаллический концентрат отправляют на извлечение благородных металлов.

Гидрометаллургическая переработка лома позволяет достичь селективного извлечения меди из полиметаллического концентрата при концентрации раствора сульфатетроаммина меди не ниже 20 г/л по меди. При концентрации раствора сульфатетроаммина меди выше 40 г/л происходит лимит реакции в виду перенасыщения раствора.

Соотношение полиметаллического концентрата к раствору сульфатетроаммина меди, как 1:10, достаточно для осуществления реакции растворения меди.

Способ переработки электронного лома осуществляли следующим образом.

Электронный лом, представляющий собой печатные платы советской военной радиоэлектроники количеством 50 кг измельчили на шредере предварительной резки до фракции 10 на 10 мм, далее на молотковой дробилке измельчили до фракции 0,3 – 2,5 мм по крупности. На вибрационном мукосее произвели классификацию материала по крупности. Выход составил 40 - 44 кг измельченного материала. До 10 кг недомола после классификации отправили на повторное измельчение. Потери по массе в связи с перемолом составили порядка 0,8 кг.

Измельченный электронный лом направили на пробоотбор методом квартования. Представительные пробы проанализировали атомно-эмиссионным методом на аппарате Thermo Scaentific iCAP 7600. Cреднее содержание металлов от общей массы электронного лома cоставило: 0,2% золота; 1,2% серебра; 23,04% меди; 0,9% металлов платиновой группы (платина, палладий, иридий).

Далее измельченный электронный лом подвергли гравитационному обогащению на концентрационном столе СКО-0,5Л, разделив на полиметаллический концентрат, содержащий драгоценные и цветные металлы, керамические включения, а также на стеклотексталитовую фракцию. Результаты гравитационного обогащения электронного лома представлены в таблице 1.

Таблица 1 Результаты гравитационного обогащения

№ примера
гравитационного обогащения
Общая масса измельченного электронного лома до гравитационного обогащения,
кг;
Масса полиметаллического концентрата,
кг;
Масса стеклотексталитовой фракции,
кг;
1 40,9 15,5 25,4
2 42,5 15,9 26,6
3 43,4 16,5 26,9

Из полученных полиметаллического концентрата и стеклотексталитовой фракции провели пробоотбор и анализ на содержание металлов, аналогичный вышеописанному. Результаты проведенных анализов показаны в таблице 2.

Таблица 2 Анализ проб на содержание металлов

№ примера Содержание золота;
%
Содержание серебра;
%
Содержание меди;
%
Содержание металлов платиновой группы;
%
Содержание
прочих материалов
(железо, свинец, олово, керамика и др.);
%
1 0,39 1,9 49 0,32 48,39
2 0,31 2 52 0,21 54,52
3 0,08 0,9 72 27,02

Полученный полиметаллический концентрат направили на гидрометаллургическую переработку в агитатор с якорной мешалкой, объемом 250 литров, для процесса растворения меди медно-аммиачным раствором сульфатетроаммина меди концентрацией 20–40 г/л по меди. Процесс растворения меди провели при комнатной температуре в 3 стадии продолжительностью 1, 6 и 10 часов соответственно. В конце каждой стадии насыщенный раствор сливали, и добавляли свежий раствор сульфатетроаммина меди концентрацией 20–40 г/л по меди при соотношении полиметаллический концентрат к раствору как 1:10. По окончании растворения меди насыщенные медью растворы объединяли. После каждой стадии растворения проводили пробоотбор и анализ аналогичный вышеописанному. Результаты гидрометаллургической переработки представлены в таблице 3.

Таблица 3 Результаты гидрометаллургической переработки


примера
Концентрация раствора сульфатетроаммина меди по меди,
г/л
Номер стадии Входящее содержание меди к общей массе полиметаллического концентрата, % Конечное содержание меди к общей массе полиметаллического концентрата после гидрометаллургической переработки,
%
1 20 1 49 18,7
2 18,7 1,9
3 1,9 1,5
2 30 1 52 47,7
2 47,7 35
3 35 21,6
3 40 1 72 44,8
2 44,8 32,7
3 32,7 23,3

Полученный раствор сульфатетроаммина меди после гидрометаллургической переработки отправили на регенерацию в электролизер с двумя графитовыми перфорированными анодами и титановым катодом. Общий объем электролизера 100 л, катодная плотность тока составила 1,5 – 2 А/дм2, на катодах осадили металлическую медь, скорость осаждения 40 г/ч.

Регенерированные растворы возвращали на гидрометаллургическую переработку лома.

Обезмеженный полиметаллический концентрат, содержащий золото, отправили на переработку согласно йод-йодидной технологии, в которой йод выступает окислителем, йодид – комплексообразователем для золота. Технологии присуща низкая токсичность, высокая стабильность растворенных комплексов и более низкий окислительно-восстановительный потенциал в сравнении с иными не цианистыми системами извлечения золота. Химическая реакция растворения протекает по схеме:

Au0 + 1/2 I2 + I- = Au I-2

Таким образом, согласно заявляемого способа из 50 кг (пример №1) электронного лома извлечено грамм: 7,95 золота; 79,45 серебра; 7,65 палладия; 0,06 платины.

Результаты осуществления изобретения по примерам 2 и 3 приведены в таблицах 1-3.

Таким образом, предложенный способ переработки электронного лома по сравнению с прототипом технически проще, позволяет селективно извлекать медь при комнатной температуре, без использования кислот, с замкнутым циклом оборота растворов сульфатетроаммина меди, используя химические реактивы не токсичные для человека и окружающей среды.

1. Способ гидрометаллургической переработки полиметаллического концентрата электронного лома с извлечением драгоценных металлов, включающий извлечение меди и золота, отличающийся тем, что извлечение меди проводят растворением меди в n стадий медно-аммиачным раствором сульфатетроаммина меди концентрацией 20–40 г/л по меди при комнатной температуре и соотношении полиметаллического концентрата к раствору сульфатетроаммина меди не менее 1:10, причем количество стадий n определяют заданной степенью извлечения меди, а извлечение золота проводят посредством йод-йодидной технологии, при этом полученный раствор с растворенной медью отправляют в электролизер на регенерацию сульфатетроаммина меди и для осаждения меди.

2. Способ по п.1, отличающийся тем, что регенерированный раствор сульфатетроаммина меди возвращают на стадию извлечения меди.



 

Похожие патенты:
Изобретение относится к комплексной безотходной технологии получения оксидов кремния, алюминия и железа из золошлаковых отходов (ЗШО). Способ включает нагрев смеси ЗШО с фторидом аммония, выщелачивание водой смеси при температуре 20-30°С, фильтрование, обработку раствора аммиачной водой для образования осадка SiO2.

Изобретение относится к области переработки с целью использования(утилизации) гальваношламов-гидроксидов тяжелых металлов с преимущественным содержанием гидроксида железа, образующихся при очистке сточных вод гальванических цехов и участков электрокоагуляционным способом.

Изобретение относится к области гидрометаллургии тяжелых цветных металлов и может быть использовано при комплексной переработке шламов нейтрализации кислых шахтных вод и переработки шламов сточных вод гальванических и аналогичных производств.

Изобретение относится к способу извлечения металлов, например, благородных металлов или меди, из вторичного сырья и других материалов с органическими компонентами.

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в дистиллированной воде при ёмкости разрядных конденсаторов 55 мкФ, напряжении 100 В и частоте импульсов 140 Гц.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение может быть использовано в металлургии. Для получения гранулята молибденсодержащего отработанные молибденсодержащие катализаторы загружают в прокалочную вращающуюся печь и при температуре 135-180°С проводят удаление серы и влаги.

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру, соединенную при помощи короткого трубопровода с быстродействующим клапаном с ресивером, и имеющую быстродействующий клапан напуска атмосферы.

Изобретение относится к переработке вторичного сырья с получением цветных металлов и может быть использовано для переработки кусковых отходов твердых сплавов на основе карбида вольфрама, титана, тантала с кобальтовой или никелевой связкой.

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с получением осадка и фторсодержащего раствора, при этом выщелачивание хвостов флотации ведут слабощелочным раствором каустической соды при температуре не более 80°С, в течение 2,0÷4,0 часов.

Изобретение относится к способу извлечения металлов, например, благородных металлов или меди, из вторичного сырья и других материалов с органическими компонентами.

Изобретение относится к очистке подотвальных вод ионитами и может быть использовано в горнодобывающей промышленности. Способ очистки подотвальных вод и технологических растворов от меди включает удаление содержащихся ионов железа(III) и ионообменную очистку.

Изобретение относится к способу циклонной плавки меди. Флюс смешивают с высушенным порошком медного концентрата с последующей подачей в сопло и в реакционную башню внутри плавильной печи через канал для подачи материала.

Изобретение относится к металлургическим процессам. Техническим результатом является дополнительное извлечение благородных, цветных, редких и редкоземельных металлов из пиритных концентратов, получаемых при переработке медно-порфировых руд.

Изобретение относится к способу плавки концентрата сульфида меди с высоким содержанием мышьяка. Способ содержит стадии смешивания концентрата с кварцевым песком и содержащим CaO материалом для получения смешанного материала, смешивания этого материала с кислородсодержащим реакционным газом и нагревания для проведения реакции.

Изобретение относится к цветной металлургии, а именно к биовскрытию и биовыщелачиванию цветных и благородных металлов из упорных сульфидных руд и отработанных штабелей кучного выщелачивания, и может использоваться в горнообогатительной, горно-химической, металлургической отраслях, в том числе на объектах в криолитозонах.

Изобретение может быть использовано для извлечения меди в присутствии других металлов из продукционных растворов сульфатного выщелачивания экстракцией органическим реагентом.

Способ получения меди высокой чистоты включает сульфатизирующий обжиг исходного медного концентрата и выщелачивание огарка с выделением меди электролизом. Сульфатизирующий обжиг проводят на воздухе, спек охлаждают до комнатной температуры и проводят ситование до фракции менее 1,0 мм.

Изобретение относится к способу извлечения металлов в виде цинка (II), меди (II) и кобальта (II) из водных растворов соляной кислоты. Способ включает их экстракцию бромидами проп-2-инил-, бут-2-инил, окт-2-инилтриоктиламмония, растворенными в толуоле.
Изобретение относится к получению окислителя сульфидов из сернокислых растворов железа (II) с использованием микроорганизмов и может быть использовано для растворения сульфидов меди, никеля, цинка, кобальта, мышьяка и железа и выщелачивания металлов из сульфидного минерального сырья, в частности из руд, продуктов и отходов горно-обогатительных и металлургических производств.

Изобретение относится к разделению и концентрированию и может быть использовано для отделения платиновых металлов от серебра, железа и меди в солянокислых растворах сорбционным методом.
Наверх