Оптоволоконный фотоэлектрический преобразователь лазерного излучения



Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
Оптоволоконный фотоэлектрический преобразователь лазерного излучения
H04B10/25 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2696355:

Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук (RU)

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер, одномодовое оптоволокно и многомодовое оптоволокна, фокон и фотоэлемент. Одномодовое и многомодовое оптоволокна оптически стыкованы так, что оптические оси оптоволокон расположены между собой под углом . Многомодовое оптоволокно оптически стыковано с фоконом, диаметр входного малого торца фокона установлен равным диаметру D сердечника многомодового оптоволокна, а радиус выходного большого торца фокона установлен равным радиусу фоточувствительной поверхности фотоэлемента, разделенного на электрически последовательно скоммутированные секторы. Технический результат – увеличение выходной мощности фотоэлектрического преобразователя, увеличение выходного напряжения до 3-4 В при сохранении высокого КПД фотопреобразования – более 40 % и при мощности лазерного излучения до 100 Вт и более. 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу.

В настоящее время одним из перспективных стратегических направлений фотоэнергетики является создание лазерных каналов передачи энергии, работающих в оптическом и инфракрасном диапазонах спектра, например, фотонных трактов лазер-оптоволокно-фотоэлемент. Для дистанционной передачи лазерного энергетического сигнала мощностью более 1 Вт на расстояние более нескольких километров необходимо иметь мощные фотоэлектрические преобразователи лазерного излучения (ФЭП ЛИ), передаваемого по одномодовому оптоволокну, характеризующемуся низкими оптическими потерями. ФЭП ЛИ являются одними из главных компонентов волоконно-оптических линий связи (ВОЛС) и обеспечивают идеальную гальваническую развязку между источником сигнала и приемником. ВОЛС на их основе невосприимчивы к электромагнитным помехам в радиодиапазоне и сами не являются источником таких помех. По этим причинам ВОЛС имеют неоспоримые достоинства в задачах, где предъявляются строгие требования по обеспечению электромагнитной совместимости и где использование медных проводников между источником и приемником невозможно или нежелательно. В настоящий момент достигнут значительный прогресс в создании ФЭП ЛИ для высокоскоростных систем информационного обмена. Рабочие частоты ФЭП ЛИ, применяемых в таких системах, достигают десятков гигагерц. Мощность оптического сигнала лежит в диапазоне от единиц микроватт до десятков милливатт. В большинстве приложений в качестве среды ВОЛС используют кварцевое волокно, окна прозрачности которого лежат вблизи следующих длин волн излучения: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно). Оптимальными материалами для создания фотопреобразователя, работающего в третьем окне, наиболее широко используемом для дальних ВОЛС, являются GaSb и InGaAs. Фотоэлементы на их основе эффективно преобразуют фотоны с длиной волны 1,55 мкм - в полосе наибольшей прозрачности и минимальных потерь современных оптических одномодовых волокон. Наряду с задачей эффективной передачи информационных сигналов ВОЛС, не менее важной является задача передачи энергии по оптическому каналу для электропитания ретрансляторов информационного сигнала, а также для питания различных удаленных радиоэлектронных устройств, например, удаленных датчиков состояния окружающей среды.

Таким образом, задача улучшения утилитарных характеристик ФЭП ЛИ, таких как КПД, выходное напряжение и выходная мощность являются весьма актуальной для ВОЛС, фотоники и фотоэнергетики.

Известен оптоволоконный фотоэлектрический преобразователь лазерного излучения (см. патент RU 2646547, МПК H01L 31/0304, H01L 31/10, опубликован 05.03.2018), включающий подложку из n-GaAs, на которую последовательно нанесены слой тыльного барьера из n-AlGaAs, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из n-AlxGa1-xAs, широкозонный стоп-слой из n-AlyGa1-yAs и контактный подслой из p-GaAs.

Недостатками известного фотоэлектрического преобразователя лазерного излучения является отсутствие фоточувствительности к излучению с длиной волны 1,55 мкм, при которой обеспечиваются минимальные оптические потери в современных оптоволокнах.

Известен оптоволоконный фотоэлектрический модуль (см. патент RU 2670719, МПК H04D 10/25, G02B 6/42, опубликован 24.10.2018), включающий симметричный оптоволоконный разветвитель, в первичное оптоволокно которого вводятся мощные импульсы оптического излучения длина вторичных оптоволокон разветвителя установлена отличающейся не более чем на 3 мм, каждое из вторичных оптоволокон оптически стыковано с AlGaAs-GaAs фотодетектором.

При оптимальной мощности входного оптического импульса, который подается на фоточувствительную поверхность каждого фотодетектора, последовательное соединение фотодетекторов (в количестве N) позволяет увеличить в N - раз выходное сопротивление, что дает возможность согласовать фотоэлектрический модуль с нагрузкой. Известный оптоволоконный фотоэлектрический модуль имеет повышенную мощность и быстродействие.

Недостатками известного фотоэлектрического преобразователя лазерного излучения является низкие КПД и надежность за счет использования оптических разветвителей, а также отсутствие фоточувствительности к излучению с длиной волны более 0,86 мкм.

Известен оптоволоконный фотоэлектрический преобразователь лазерного излучения (см. CN 206117559, МПК H01S 01/00, опубликован 19.04.2017)), включающий лазерный модуль, состоящий из лазерных излучателей с различной длиной волны, оптической системы ввода излучения в оптоволокно, оптоволокна и многопереходного концентраторного фотоэлемента.

Недостатком известного устройства является необходимость подстройки мощности лазерных излучателей для получения одинаковых токов в каждом переходе многопереходного концентраторного фотоэлемента, а также отсутствие фоточувствительности к излучению с длиной волны 1.55 мкм, при которой обеспечиваются минимальные оптические потери в современных оптоволокнах.

Наиболее близким по совокупности существенных признаков к настоящему техническому решению является оптоволоконный фотоэлектрический преобразователь лазерного излучения (см. заявка US 2006140644, МПК Н04В 10/04, опубликована 29.06.2006). Оптоволоконный фотоэлектрический преобразователь-прототип включает включающий оптически последовательно соединенные лазер, оптоволокно и фотоэлемент.

Недостатком известного устройства является небольшая мощность (1 мВт) устройства возбуждения, которая ограничивается малой мощностью фотопреобразователя.

Задачей настоящего изобретения явлалась разработка оптоволоконного фотоэлектрического преобразователя лазерного излучения, который бы имел повышенную выходную мощность и выходное напряжение при сохранении высокого КПД фотоэлектрического преобразователя.

Поставленная задача достигаются тем, что оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер, одномодовое оптоволокно, многомодовое оптоволокно, фокон и фотоэлемент. Фоточувствительная область фотоэлемента выполнена в виде последовательно электрически соединенных осесимметричных секторов круга. Одномодовое оптоволокно оптически состыковано через иммерсионную среду с многомодовым оптоволокном под углом. Ось одномодового оптоволокна отстоит на расстоянии x от оси многомодового оптоволокна в плоскости его торца. Числовая апертура одномодового оптоволокна меньше половины числовой апертуры А2 многомодового оптоволокна. Диаметры входного малого и выходного большого торцов фокона высотой Н равны диаметрам соответственно сердцевины многомодового оптоволокна и фоточувствительной области фотоэлемента. Величины , х и Н удовлетворяют соотношениям:

, град;

мм;

Н = (0,8-1,2)⋅R/A2, мм;

где: D - диаметр сердцевины многомодового оптоволокна, мм;

d - диаметр сердцевины одномодового оптоволокна, мм;

R - радиус фоточувствительной области фотоэлемента, мм.

Длина L многомодового оптоволокна может удовлетворять соотношению:

где N = 10-20 - эмпирический коэффициент.

Новым в настоящем оптоволоконном фотоэлектрическом преобразователе лазерного излучения является выполнение Фоточувствительной области фотоэлемента в виде последовательно электрически соединенных осесимметричных секторов круга, состыковка одномодового оптоволокна с многомодовым оптоволокном под углом , выполнение диаметров входного малого и выходного большого торцов фокона высотой Н равным диаметрам соответственно сердцевины многомодового оптоволокна и фоточувствительной области фотоэлемента, а также то, что величины , x и H удовлетворяют приведенным выше соотношениям.

В настоящем оптоволоконном фотоэлектрическом преобразователе лазерного излучения оптическая стыковка оптоволокон может быть осуществленая путем заполнения зазора между торцами одномодового и многомодового оптоволокон иммерсионной жидкостью с показателем преломления не менее показателя преломления сердечника одномодового волокна, но не более показателя преломления сердечника многомодового оптоволокна.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является увеличение выходной мощности фотоэлектрического преобразователя, увеличение выходного напряжения до 3-4 В, при сохранении высокого КПД фотопреобразования - более 40% и при мощности лазерного излучения до 100 Вт и более.

Сущность изобретения поясняется чертежом, где:

на фиг. 1 приведено схематическое изображение настоящего оптоволоконного фотоэлектрического преобразователя лазерного излучения, вид сбоку;

на фиг. 2 показан в увеличенном масштабе вид сверху на торец сердечника многомодового оптоволокна с сопряженным сердечником одномодового оптоволокна;

на фиг. 3 изображен в аксонометрии фотоэлемент оптоволоконного фотоэлектрического преобразователя;

на фиг. 4 - приведена фотография 8-ми секторного фотоэлемента оптоволоконного фотоэлектрического преобразователя лазерного излучения с площадью фоточувствительной области фотоэлемента 300 мм2;

на фиг. 5 показано распределение интенсивности лазерного излучения на поверхности фотоэлемента с фоточувствительной областью диаметром, равным 10 мм, при использовании одномодового оптоволокна;

на фиг. 6 приведено распределение интенсивности лазерного излучения на поверхности фотоэлемента с фоточувствительной областью диаметром, равным 10 мм, при использовании многомодового оптоволокна;

на фиг. 7 показана фотография торца многомодового оптоволокна (диаметром D = 1 мм), прилегающего к фотоэлементу (диаметром 1,3 мм), который облучается выходящим из оптоволокна лазерным излучением (светлые пятна различной формы на поверхности фотоэлемента) при х = 0,44 и угл. град.

Оптоволоконный фотоэлектрический преобразователь лазерного излучения (см. фиг. 1-фиг. 4) включает лазер 1 одномодовое оптоволокно 2 с числовой апертурой А1 меньше половины числовой апертуры А2 многомодового оптоволокна 3, а диаметр d сердцевины одномодового оптоволокна 2 установлен меньше диаметра D сердцевины многомодового оптоволокна 3, оптически стыкованного через иммерсионную среду 4 с одномодовым оптоволокном 2 так, что оптические оси 5 и 6 соответственно оптоволокна 2 и оптоволокна 3 расположены между собой на расстоянии х в плоскости торца многомодового волокна в диапазоне значений D/4<x<(D-d)/2 и под углом , установленном в диапазоне . Многомодовое оптоволокно 3 оптически стыковано с фоконом 7, соосным с оптической осью 6 многомодового оптоволокна 3, так, что оптическая ось 8 фокона 7 совпадает с оптической осью 6 многомодового оптоволокна 3. Диаметр входного малого торца фокона установлен равным диаметру D сердцевины многомодового оптоволокна 3. Радиус R выходного торца фокона 7 установлен равным радиусу фоточувствительной поверхности 9 фотоэлемента 10, установленного прилегающим к выходному торцу фокона 7. Фотоэлемент 10 разделен на электрически последовательно соединенные секторы. Площадь фоточувствительной поверхности 9 фотоэлемента 10, выраженная в мм2, целесообразно устанавливать равной КР, где Р - мощность лазерного излучения, выраженная в Ваттах, а К - эмпирический коэффициент, увеличивающийся с увеличением мощного лазерного излучения, установлен в диапазоне 1-3. Фотоэлемент 10 (см. фиг 1 и фиг. 3) включает следующие компоненты: 11 - омический контакт к фронтальной части фотоэлемента; 12 - омический контакт к тыльной части фотоэлемента 10; 13 - один из 12-ти секторов фотоэлемента 10; 14 - область «кольцевого» (торообразного) лазерного излучения на поверхности фотоэлемента 10; 15 - золотые проволоки, обеспечивающие отвод фототока от фронтальной части секторов фотоэлемента 10; 16 - контактные площадки омического контакта 11 секторов 13 фронтальной части фотоэлемента 10; 17 - тыльный контакт фотоэлемента 10 на печатной плате; 18 - контактная площадка, скоммутированная с контактом к фронтальной области фотоэлемента 10 на печатной плате; 19 - контактная площадка на печатной плате, скоммутированная с контактом к тыльной части фотоэлемента 10; 20 - теплоотводящая основа печатной платы, обеспечивающей коммутацию секторов фотоэлемента 10 в последовательную электрическую цепь; 21 - один из 12-ти зазоров между секторами фотоэлемента 10. В настоящем оптоволоконном фотоэлектрическом преобразователе лазерного излучения длина многомодового оптоволокна 3 может быть установлена равной где: N - эмпирический коэффициент, установленный в диапазоне N = 10-20, D - диаметр сердцевины многомодового оптоволокна 3.

Оптоволоконный фотоэлектрический преобразователь лазерного излучения работает следующим образом. При преобразовании ваттной мощности лазерного излучения в известных фотоэлементах возникают существенные омические потери в связи с протеканием большого тока (для длины волны 1,55 мкм фототок составляет величину более 1 А на 1 Вт лазерной мощности). Кроме того, такой фотоэлемент вырабатывает низкое напряжение порядка 0,4 В, которое в дальнейшем практически очень трудно преобразовать в требуемое напряжение 3-5 В для питания удаленных радиоэлектронных, сенсорных и других устройств. Использование фотоэлемента 10, разделенного на секторы 13, позволяет уменьшить ток и увеличить напряжение кратно количеству секторов 13 при мощности лазерного излучения от единиц Вт до 100 Вт и более. Однако при использовании секторного фотоэлемента 10 возникают дополнительные потери оптического излучения на зазорах 21 между секторами 13. Особенно большие потери имеют место в центральной части фотоэлемента 10, так как при освещении фотоэлемента 10 из одномодового волокна 2 распределение оптической мощности на поверхности фотоэлемента 10 близко к распределению Гаусса с максимумом интенсивности в центральной части фотоэлемента 10. Поперечное сечение распределения интенсивности лазерного излучения из одномодового оптоволокна 2 показано на фиг. 5. При таком распределении большая часть оптической мощности находится в центральной части фотоэлемента 10, в которой потери на зазорах 21 между секторами 13 максимальны и могут составлять более 30 отн. %. В настоящем оптоволоконном фотоэлектрическом преобразователе между одномодовым волокном 2 и фотоэлементом 10 вставлено многомодовое волокно 3 с диаметром D сердечника больше диаметра d сердечника одномодового оптоволокна 2, оптически стыкованного через имерсионную среду 4 с многомодовым оптоволокном 3. Использование многомодового оптоволокна 3, состыкованного под углом с входным одномодовым оптоволокном 2, позволяет преобразовать «гауссово» распределение оптической мощности на поверхности фотоэлемента (фиг. 5) в распределение в виде кольца (в торообразное распределение), что позволяет уменьшить потери излучения на зазорах между секторами 13 в несколько раз, а также уменьшить омические потери при протекании фототока от области генерации фототока в фотоэлементе 10 до основного (кольцевого) омического контакта 11 фотоэлемента 10. Диагональное сечение получаемого торообразного распределения интенсивности лазерного излучения на поверхности фотоэлемента 10 показано на фиг. 6. Для получения распределения в виде кольца на выходе многомодового оптоволокна 3 необходимо между осями 6, 8 оптоволокон 2, 3 задать угол и расстояние x в плоскости торца многомодового волокна (см. фиг. 2). Расстояние х должно находиться в диапазоне D/4<x<(D-d)/2. При x<D/4 увеличиваются потери на зазорах между сегментами 13 фотоэлемента 10, так как излучение на выходе многомодового оптоволокна 3 полностью или частично сосредоточено в центре, а при A>(D-d)/2 увеличиваются потери на ввод излучения из одномодового оптоволокна 2 в многомодовое оптоволокно 3 вследствие того, что часть излучения не попадает на торец многомодового оптоволокна 3. Угол необходимо задать большим, чем arcsin числовой апертуры А1 одномодового оптоволокна 2, но меньше разницы arcsin А2 -arcsin A1. При излучение полностью или частично сосредоточено в центральной части фотоэлемента 10, что приводит к уменьшению КПД, а при часть лучей в многомодовом оптоволокне 3 имеет угол меньший угла полного внутреннего отражения, что приводит к потерям излучения. При соблюдении этих условий лазерное излучение, вошедшее в многомодовое оптоволокно 3, будет претерпевать полное внутреннее отражение внутри волокна и выйдет через торец оптоволокна 3 в виде кольца излучения с минимальными оптическими потерями. Для уменьшения потерь на отражение от торцов оптоволокон 2 и 3 пространство между торцами одномодового оптоволокна 2 и многомодового оптоволокна 3 заполнено иммерсионной жидкостью 4. Фотоэлемент 10 выполнен с фоточувствительной поверхностью 9 в виде круга (см. фиг. 1), ограниченного фронтальным кольцевым омическим контактом 11 с внутренним радиусом R. На тыльной стороне фотоэлемента 10 нанесен сплошной омический контакт 12. Длина L многомодового оптоволокна 3 должна обеспечивать достаточное количество отражений от стенок сердечника оптоволокна 3 для обеспечения равномерного распределения мощности лазерного излучения по длине светового кольца. Экспериментально было установлено, что равномерное распределение мощности лазерного излучения по длине светового кольца достигается при выполнении условия, когда длина L многомодового оптоволокна установлена в диапазоне (10-20) . Выполнение условия необходимо для достижения равномерности распределения интенсивности излучения по длине кольца, а выполнение условия необходимо для снижения оптических потерь излучения в многомодовом оптоволокне 3. Многомодовое оптоволокно 3 оптически стыковано с фоконом 7, соосным с оптической осью 6 многомодового оптоволокна 3. Диаметр входного малого торца фокона 7 установлен равным диаметру сердечника D многомодового оптоволокна 3, а радиус выходной апертуры фокона установлен равным радиусу R фоточувствительной поверхности 9 фотоэлемента 10, установленной прилегающей к выходному торцу фокона 7. Высота Н фокона установлена не более R/A2: где R - радиус фоточувствительной поверхности фотоэлемента 10; А2 - значение числовой апертуры многомодового оптоволокна 3. Выполнение этого условия необходимо для достижения наибольшего КПД преобразования лазерного излучения в фотоэлементе 10, обеспечиваемого при кольцеобразной засветке фоточувствительной поверхности фотоэлемента 10 вблизи контакта 11 (фиг. 7). При этом уменьшается интенсивность лазерного излучения в центральной части фотоэлемента 10 и уменьшается вероятность выхода переферийной части светового кольца на внутреннюю поверхность фокона 7 и снижаются потери на отражение излучения. На фиг. 3 показан вариант 12-ти секторного фотоэлемента 10. Секторы 13 электрически последовательно скоммутированы с помощью электрических контактов 15, 16, 18 к фронтальным областям секторов фотоэлемента 10 и контактов 17, 19 к тыльной поверхности подложки. Электрическая коммутация осуществлена с помощью печатной платы на теплоотводящей основе 20. Экспериментально было установлено, что отношение площади фоточувствительной поверхности фотоэлемента 10, выраженной в мм2, к мощности лазерного излучения, выраженной в Ваттах, должно быть в диапазоне 1-3, причем это отношение увеличивается с увеличением мощности излучения. При этих условиях может быть обеспечен эффективный отвод тепла, выделяющегося на фотоэлементе при его облучении мощным лазерным излучением и сохранение высокого значения КПД порядка 40% при увеличении мощности лазерного излучения.

Результатом работы настоящего оптоволоконного фотоэлектрического преобразователя мощного лазерного излучения является достижение выходной электрической мощности от 0,4 Вт до 38 Вт, при мощности лазерного излучения от 1 Вт до 100 Вт, передаваемого по одномодовому оптоволокну длиной до нескольких десятков километров. Данное устройство позволяет осуществлять беспроводную передачу энергии по мощному лазерному лучу для обеспечения энергопитанием удаленных электронных устройств, например, усилителей информационного сигнала в ВОЛС и датчиков параметров окружающей среды, в том числе, расположенных глубоко под водой или глубоко под землей.

Пример 1. Был изготовлен оптоволоконный фотоэлектрический преобразователь лазерного излучения лазера с длиной волны 1,55 мкм и мощностью 1 Вт, который включал одномодовое оптоволокно с числовой апертурой А1=0,1, оптически стыкованное с многомодовым оптоволокном диаметром сердечника d=500 мкм, с числовой апертурой А2=0,22 так, что оптические оси оптоволокон расположены между собой под углом и на расстоянии х=220 мкм. Длина многомодового оптоволокна равна Излучение лазера из многомодового оптоволокна вводилось в фотоэлемент с фоточувствительной поверхностью, выполненной в виде разделенного на 6 секторов круга с диаметром равным 1,15 мм. Площадь фотоэлемента была равна 1 мм2. Коэффициент К=1. Многомодовое оптоволокно оптически было стыковано с фоконом, диаметр входной апертуры которого составлял 500 мкм. Высота фокона была выполнена равной 2,5 мм. Выходная электрическая мощность преобразователя составила 0,41 Вт при выходном напряжении 2,8 В и КПД=41%.

Пример 2. Был изготовлен оптоволоконный фотоэлектрический преобразователь лазерного излучения, включающий лазер с мощностью излучения 100 Вт и одномодовое оптоволокно с числовой апертурой A1=0,1. Диаметр сердечника многомодового оптоволокна d=1000 мкм. Числовая апертура А2=0,39. Оптические оси оптоволокон были расположены между собой под углом и на расстоянии х=450 мкм. Длина многомодового оптоволокна равна . Лазерное излучение из многомодового оптоволокна через фокон вводили в фотоэлемент с фоточувствительной поверхностью, выполненной в виде разделенного на 8 секторов круга с радиусом 9,7 мм. Площадь фотоэлемента была равна 300 мм2 (коэффициент К=3). Высота фокона Н=25 мм. Выходная электрическая мощность устройства составила 38 Вт при выходном напряжении 3,6 В и КПД = 38%.

1. Оптоволоконный фотоэлектрический преобразователь лазерного излучения, включающий оптически последовательно соединенные лазер, одномодовое оптоволокно, многомодовое оптоволокно, фокон и фотоэлемент, причем фоточувствительная область фотоэлемента выполнена в виде последовательно электрически соединенных осесимметричных секторов круга, одномодовое оптоволокно оптически состыковано через иммерсионную среду с многомодовым оптоволокном под углом , ось одномодового оптоволокна отстоит на расстоянии х от оси многомодового оптоволокна в плоскости его торца, числовая апертура A1 одномодового оптоволокна меньше половины числовой апертуры А2 многомодового оптоволокна, диаметры входного малого и выходного большого торцов фокона высотой Н равны диаметрам соответственно сердцевины многомодового оптоволокна и фоточувствительной области фотоэлемента, при этом величины , х и Н удовлетворяют соотношениям:

arcsin А1 < α < arcsin А2 - arcsin А1, град;

, мм;

Н=(0,8-1,2)⋅R/A2, мм;

где: D - диаметр сердцевины многомодового оптоволокна, мм;

d - диаметр сердцевины одномодового оптоволокна, мм;

R - радиус фоточувствительной области фотоэлемента, мм.

2. Преобразователь по п. 1, отличающийся тем, что длина L многомодового оптоволокна удовлетворяет соотношению:

;

где N=10-20 - эмпирический коэффициент.



 

Похожие патенты:

Изобретение относится к области оптоволоконной связи, в частности к оценке эффективности в оптоволоконных линиях связи, и более конкретно к процедуре измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в уменьшении уровня потребления энергии.

Изобретения относятся к технике электросвязи, в частности к перспективным комбинированным системам волоконно-эфирной структуры, типичными представителями которых являются интенсивно развивающиеся локальные распределенные системы класса ROF (Radio-Over-Fiber).

Изобретение относится к радиосистемам обмена данными с применением радиофотонных элементов и может быть использовано для передачи данных с бортового датчика высокоскоростной информации подвижного воздушного объекта (ВО) на наземный комплекс (НК).

Изобретение относится к оптическим мультиплексорам ввода/вывода оптических сигналов по технологиям волнового уплотнения (CWDM, DWDM) и может быть использовано для ввода/вывода сигналов отдельных каналов из мультиплексированного сигнала в волоконно-оптические системы передачи (ВОЛП) на любом ее участке.

Изобретение относится к области систем квантовой рассылки криптографического ключа. Техническим результатом является повышение достоверности рассылки криптографического ключа по квантовому каналу.

Изобретение относится к способам и устройствам беспроводной связи. Технический результат заключается в обеспечении связи с использованием широкополосного кадра данных.

Изобретение относится к области квантовой криптографии. Технический результат - исключение необходимости подстройки состояния поляризации на выходе из линии связи и в принимающей части с одновременным упрощением конструкции принимающей части.

Изобретение относится к радиотехнике и может использоваться для передачи информации абонентам двигающимся на траекториях в зоне прямой видимости друг от друга. Технический результат состоит в расширении функциональных возможностей системы передачи командной или связной информации группе абонентов.

Изобретение относится к оптическим системам связи. Технический результат состоит в повышении надежности устройства.
Панель солнечной батареи содержащая каркас, выполненный из упругих элементов и фотопреобразователей, при этом согласно изобретению фотопреобразователи имеют форму трапеций, а каркас выполнен в виде упругих колец различного диаметра, расположенных концентрично и равномерно, каждый фотопреобразователь закреплен своим основанием на двух соседних кольцах каркаса, а размеры фотопреобразователей, форма трапеций и особенности их крепления на каркасе выбраны исходя из возможности трансформации каркаса от плоской поверхности в полусферу.

Изобретение относится к системам обнаружения с помощью индукционных катушек токопроводящих объектов, например огнестрельного и (или) холодного оружия, металлосодержащих взрывных устройств и т.п.

Настоящее изобретение относится к полупроводниковым гибридным структурам для преобразования энергии светового излучения в электрическую энергию и может быть использовано при создании альтернативных источников энергии.

Изобретение относится к области оптического приборостроения и касается приемника инфракрасного излучения. Двухспектральный инфракрасный приемник излучения содержит тонкопленочную матричную структуру планарных фотогальванических элементов на основе селенида свинца, снабженных оптическими фильтрами и расположенных вокруг единой оси по окружности с чередованием фотогальванических элементов двух разных каналов спектральной чувствительности.

Изобретение относится к гелиотехнике. Планарный высоковольтный фотоэлектрический модуль содержит электрически соединенные между собой планарные фотоэлектрические элементы, расположенные в одной плоскости в герметичной оболочке между верхним и нижним защитными покрытиями.

Настоящее изобретение относится к клею для ламинированных листов, подложке для солнечной батареи и к модулю солнечной батареи. Указанный клей содержит уретановую смолу, получаемую смешиванием акрилового полиола с алифатическим изоцианатным соединением, а также имеет химическую структуру, полученную из диенового полимера.

Изобретение относится к области концентраторных солнечных фотоэлектрических преобразователей, применяемых на наземных гелиоэнергетических установках. Согласно изобретению в известном фотоэлектрическом модуле, содержащем корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней его стороне, фотоэлектрические преобразователи с различной шириной запрещенной зоны, оптический фильтр, расположенный в зоне действия линзы Френеля, при этом фотоэлектрические преобразователи с различной шириной запрещенной зоны расположены на уровне оптического фильтра, выполненного в виде призмы, расположенной между линзой Френеля и светоотражающими фокусирующими зеркалами, установленными на тыльной стороне фотоэлектрического модуля, направленными на соответствующие фотоэлектрические преобразователи с определенной шириной запрещенной зоны, при этом рабочие поверхности призмы обращены к линзе Френеля и фокусирующим зеркалам с возможностью поворота призмы относительно оптической оси линзы Френеля.

Изобретение относится к области гелиоэнергетики и касается фотоэлектрического модуля. Фотоэлектрический модуль включает в себя корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней ее стороне, фотоэлектрические преобразователи с различной шириной запрещенной зоны и оптический фильтр, расположенный в зоне действия линзы Френеля.

Изобретение относится к оптоэлектронике. Описан способ повышения эффективности преобразования поглощенной энергии электромагнитных волн светового потока в электрическую энергию, согласно изобретению связанный с образованием акусторезонансного электронно-электрического явления в структуре батареи, созданной из фотоэлементов монокристалла арсенида галлия, в результате создания в их структуре высокочастотных ультразвуковых сдвиговых волновых колебаний, образованных одним из возбужденных фотоэлементов данной батареи, возбужденным высокочастотным пьезоэлементом из ниобата лития, расположенного на поверхности этого фотоэлемента.

Способ изготовления светопроницаемого тонкопленочного солнечного модуля на основе халькопирита включает нанесение слоя металлических электродов на прозрачную предварительно очищенную подложку, формирование на ней слоя металлических электродов в виде массива поочередно расположенных отдельных металлических электродов, очистку прозрачной подложки со слоем металлических электродов от отходов процесса формирования массива металлических электродов, формирование фотоактивного слоя халькопирита CIGS, нанесение буферного слоя, удаление части буферного слоя и нижележащей части фотоактивного слоя над каждым металлическим электродом для обеспечения доступа к слою металлического электрода, нанесение слоя прозрачного электрода, удаление части прозрачного электродного слоя, нижележащей части буферного слоя и нижележащей части фотоактивного слоя над каждым металлическим электродом для обеспечения доступа к слою металлического электрода, образуя последовательное соединение элементов солнечного модуля, при этом формирование фотоактивного слоя осуществляют способом электрохимического осаждения или способом печати прекурсоров фотоактивного слоя халькопирита CIGS с последующей термической обработкой, при этом нанесение прекурсоров осуществляют непосредственно на поверхность каждого металлического электрода, исключая другие участки.
Наверх