Способ очистки воды от 2,4-дихлорфенола



Способ очистки воды от 2,4-дихлорфенола
Способ очистки воды от 2,4-дихлорфенола
Способ очистки воды от 2,4-дихлорфенола
Способ очистки воды от 2,4-дихлорфенола
Способ очистки воды от 2,4-дихлорфенола
Способ очистки воды от 2,4-дихлорфенола

Владельцы патента RU 2696391:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) (RU)

Изобретение может быть использовано в химической промышленности для очистки сточных вод от хлорорганических соединений, например 2,4-дихлорфенола, с помощью плазмы диэлектрического барьерного разряда. Способ включает пропускание очищаемой воды через емкость, подачу плазмообразующего газа - кислорода и обработку в диэлектрическом барьерном разряде при напряжении, вкладываемом в разряд, 6,5-7,2 кВ. Внутрь емкости помещают слой адсорбента, в качестве которого выбирают силикатный сорбент - диатомит. Способ обеспечивает повышение эффективности очистки, возможность достигать полной очистки воды даже при высоких концентрациях 2,4-дихлорфенола в воде, снижение расхода кислорода, уменьшение времени контакта воды с зоной разряда, снижение энергозатрат. 4 табл., 3 пр.

 

Изобретение относится к химической промышленности, а именно, к технологии очистки воды с помощью плазмы диэлектрического барьерного разряда - процесса, позволяющего окислить загрязняющие вещества до оксида углерода и воды, с присутствием в емкости адсорбента - вещества способного поглощать и удерживать загрязняющие вещества (сорбаты), и может быть использовано, например, для очистки сточных вод от хлорорганических соединений, например, 2,4-дихлорфенола.

Известен способ адсорбционной очистки воды от фенолов (Пат. 2111172 Российская Федерация, МПК C02F 1/28. Способ адсорбционной очистки воды / Конюхова Т.П.; заявитель и патентообладатель Центральный научно-исследовательский институт геологии нерудных полезных ископаемых, - N 96112598/25; заявл. 25.06.1996; опубл. 20.05.1998), включающий фильтрацию через природный сорбент, в качестве которого используют кремнистую породу смешанного минерального состава (масс. %): опал-кристобалит - 30-49; цеолит - 7-25; глина - 7-25, кальцит - 10-28, остальное - обломочно-песчано-алевритовый материал), которую прокаливают перед активацией при 300°С, а после активации пород обрабатывают 2н. раствором хлорида натрия.

Недостатком данного способа является низкая сорбционная емкость природного сорбента по фенолам, а также процесс дополнительной активации сорбента при высокой температуре перед очисткой воды, поэтому способ рекомендован для доочистки воды от фенолов.

Известен способ биохимической очистки промышленных сточных вод от фенолов (Пат. 2188164 Российская Федерация, МПК C02F 3/02 C02F 3/02, C02F 101:30, C02F 103:36. Способ биологической очистки сточных вод от фенола / Сафронов В.В.; заявитель и патентообладатель Российский химико-технологический университет им. Д.И. Менделеева, - N 2000127572/12; заявл. 03.11.2000; опубл. 27.08.2002, Бюл. №24), который осуществляют путем совместного и одновременного окисления фенолов активным илом и перекисью водорода. Активный ил предварительно адаптируют в течение 1,5-3 месяцев к высоким концентрациям фенола не более 3,0 г/л и перекиси водорода не более 3,0 г/л без уменьшения интенсивности биологического окисления.

Недостатком такого способа является проведение процесса в длительном периодическом режиме.

Известен способ очистки сточных вод от фенолов (Пат. 2058265 Российская Федерация, МПК C02F 1/72 B01J 23/34. Способ очистки сточных вод от фенолов / Черемисина О.В.; заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный", - N 2000127572/12; заявл. 03.11.2000; опубл. 27.08.2002), который включает электрокаталитическое окисление с использованием марганецсодержащего катализатора (пиролюзита) с высотой насыпного слоя 1,2-6,0 см в поле гальванического элемента, анодом которого является пиролюзит, а катодом - пластины из нержавеющей стали. Электрокаталитическая обработка сточной воды, содержащей фенол в количестве 4-200 мг/л, в поле гальванического элемента реактора с секционной загрузкой анода катализатора пиролюзита, разделенного катодами пластинами из нержавеющей стали, позволяет в течение 1,0-1,5 ч снизить содержание фенола в воде до 0,001 мг/л, т.е. до предельно допустимой концентрации. Температура протекания процесса 20±5°С.

Недостатками способа являются высокий расход энергии и невозможность использования разработанной электрокаталитической технологии для очистки сточных вод от высоких концентраций фенолов.

За прототип принят способ очистки воды [Gushchin, A.A., Grinevich, V.I., Shulyk, V.Y., Kvitkova. E.Y., & Rybkin. V.V. (2018). Destruction Kinetics of 2, 4 Dichlorophenol Aqueous Solutions in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen. Plasma Chemistry and Plasma Processing, 38(1), 123-134. Гущин А.А., Гриневич В.И., Шулык В.Ю., Квиткова Е.Ю., Рыбкин В.В. (2018). Кинетика деструкции водных растворов 2,4-дихлорфенола в диэлектрическом барьерном разряде при атмосферном давлении в кислороде. PlasmaChemistryandPlasmaProcessing, 38(1)], в котором вода, содержащая 2,4-дихлорфенол, поступала в емкость, при подаче плазмообразующего газа-кислорода с расходом 3 см3/сек, при напряжении, вкладываемом в разряд 6,0-13,0 кВ.

Недостатками прототипа являются низкая степень очистки при увеличении концентрации 2,4-дихлорфенола в воде, высокие энергозатраты для проведения процесса очистки, низкое значение расхода жидкости, поступающей на очистку, требование большого времени контакта жидкости с зоной разряда, неполнота разложения 2,4-дихлорфенола в растворе, высокий расход кислорода.

Техническим результатом изобретения является повышение эффективности очистки, возможность достигать полной очистки воды даже при более высоких концентрациях 2,4-дихлорфенола в воде, снижение расхода кислорода, уменьшение требующегося времени контакта с зоной разряда, снижение энергозатрат.

Указанный результат достигается тем, что в способе очистки воды, заключающемся в пропускании ее через емкость, подаче плазмообразующего газа-кислорода и обработкой в диэлектрическом барьерном разряде при напряжении, вкладываемом в разряд 6,5-7,2 кВ, согласно изобретению, внутрь емкости помещают слой адсорбента, в качестве которого, выбирают силикатный сорбент-диатомит.

Технический результат достигается за счет того, что при помещении в емкость силикатного сорбента-диатомита, происходит рост его сорбционной емкости и увеличение поверхностной активности по сравнению с исходным (сорбционная емкость сорбента-диатомита при обработке в диэлектрическом барьерном разряде увеличивалась в 1,5-1,75 раза). При этом происходит повышение эффективности очистки за счет процесса адсорбции даже при более высоких концентрациях 2,4-дихлорфенола, увеличении времени контакта воды с разрядной зоной за счет снижения скорости потока (т.к. жидкость задерживается в разрядной зоне, проходя через слой сорбента), а не за счет снижения расхода жидкости как в прототипе, снижение энергозатрат, и отсутствие вторичного загрязнения воды.

В качестве сорбента используют диатомит, например, марки СМД СОРБ.

Изобретение осуществляют следующим образом.

Пример 1.

В качестве сорбента используют диатомит, например, марки СМД СОРБ.

Сорбент диатомит массой 2 г, засыпают в емкость, представляющую собой стеклянную трубку диаметром 22 мм, внутри которой находится алюминиевый электрод цилиндрической формы. Длина электрода составляет 160 мм, диаметр 16 мм. На стеклянную трубку намотан внешний электрод, в качестве которого использована алюминиевая фольга, тонким равномерным слоем и длинной 8 см. Внутри ячейки находится фторопластовое кольцо, удерживающее сорбент в получаемой зоне горения разряда. С помощью входного патрубка в емкость подают плазмообразующий газ, в качестве которого используют кислород с расходом 0,5 см3/сек.

Далее возбуждают плазму барьерного разряда с помощью высоковольтного трансформатора. Разряд имеет следующие параметры: сила тока 4,2-8,2 мА, напряжение 6,5;6,7;7,1 и 7,2 кВ. Объемная мощность, вкладываемая в разряд, изменялась в пределах 1-4 Вт/см3 (частота прикладываемого к электродам напряжения 800 Гц). Одновременно с возбуждением плазмы, с помощью насоса в реактор подают водный раствор 2,4-дихлорфенола с расходом, составляющим 0,12 мл/с. Начальная концентрация 2,4-дихлорфенола в воде составляла 100 мг/л. Результаты обработки и параметры проведения экспериментов представлены в таблице 1.

Пример 2.

Сорбент диатомит массой 2 г, засыпают в емкость для обработки в диэлектрическом барьерном разряде. В емкость подают плазмообразующий газ, в качестве которого используют кислород с расходом 0,5 см3/сек. Разряд имеет следующие параметры: сила тока 8,2 мА, напряжение 7,2 кВ, частота тока 800 Гц, объемная мощность 3,26 Вт/см3. Расходы жидкости, содержащей 2,4-дихлорфенол с концентрацией 100 мг/л составляют 0,4; 0,28; 0,18 и 0,14 мл/сек. Времена контакта с зоной разряда составляют 1,2; 1,5; 2 и 2,4 секунды. Времена контакта (tk), рассчитывались по (1):

где D - диаметр внутреннего электрода, см, h - толщина пленки раствора, см, L - длина зоны разряда, см, Q - скорость потока раствора, мл/с,

Толщина пленки жидкости рассчитывалась по уравнению для гладкого ламинарного потока по формуле (2):

где ν - кинематическая вязкость, м2/с, g - постоянная силы тяжести, м/с2. Эффективность очистки от расхода жидкости и параметры проведения экспериментов представлена в таблице 2.

Пример 3.

Сорбент диатомит массой 2 г, засыпают в емкость для обработки в диэлектрическом барьерном разряде. В емкость подают плазмообразующий газ, в качестве которого используют кислород с расходами 0,2; 0,5; 0,7 и 1 см3/сек. Разряд имеет следующие параметры: сила тока 8,2 мА, напряжение 7,2 кВ, частота тока 800 Гц, объемная мощность 3,26 Вт/см3. Расход жидкости, содержащий 2,4-дихлорфенол с концентрацией 100 мг/л составляет 0,14 мл/сек. Время контакта с зоной разряда составляет 2,43 секунды. Зависимость эффективности очистки от расхода кислорода и параметры проведения экспериментов представлены в таблице 3.

Зависимость эффективности десорбции и основные параметры в сравнении с параметрами прототипа представлена в таблице 4.

Данные, представленные в таблице 4, показывают, что при большем расходе жидкости и меньшем времени контакта, за счет присутствия в реакторе адсорбента эффективность очистки повышается с 90,6 до 100%. При этом энергозатраты снижаются в 2,14 раз по сравнению с прототипом. Расход используемого газа (кислорода) в заявляемом методе меньше, чем представленный в прототипе, в 6 раз. При этом увеличивается эффективность очистки воды, содержащей 2,4-дихлорфенол в 6,7 раз больше, чем в прототипе.

Таким образом, более эффективно осуществляется процесс очистки воды, в том числе с точки зрения энергозатрат, снижается расход кислорода, уменьшается требуемое время контакта с зоной разряда.

Способ очистки воды от 2,4-дихлорфенола, заключающийся в пропускании ее через емкость, подаче плазмообразующего газа - кислорода и обработке в диэлектрическом барьерном разряде при напряжении, вкладываемом в разряд, 6,5-7,2 кВ, отличающийся тем, что внутрь емкости помещают слой адсорбента, в качестве которого используют диатомит.



 

Похожие патенты:

Изобретение относится к области фотокатализа, основанного на способности катализаторов активироваться под действием света или ультрафиолетового излучения и ускорять различные реакции.

Изобретение относится к водоочистке. Объединенная судовая система приготовления и кондиционирования питьевой воды включает два функциональных блока: предварительной очистки А и основной очистки (кондиционирования) Б, а также блок подготовки воздуха.

Изобретение относится к области биотехнологии. Предложен способ биологической очистки сточных вод.

Изобретение относится к водоподготовке. Система получения чистой и сверхчистой воды включает модуль предварительной подготовки воды, модуль получения воды 3 типа, модуль получения воды 2 типа и модуль получения воды 1 типа.

Группа изобретений относится к очистке и утилизации коммунальных стоков и может быть использована в жилищно-коммунальном хозяйстве, а также для очистки промышленных и агропромышленных стоков.

Изобретение может быть использовано при разведке и разработке месторождений полезных ископаемых для очистки подземных вод, загрязненных в результате техногенного воздействия.

Изобретение относится к области очистки воды из различных источников до уровня питьевой СанПиН 2.1.4.1074-01. Установка комплексной водоочистки универсальная мобильная автоматизированная УМКВА-1, смонтированная внутри утепленного обогреваемого обитаемого кузова-фургона, установленного на автошасси высокой проходимости, состоит из модулей водоподготовки, водоочистки и модуля автоматического управления и контроля.

Изобретение относится к области очистных сооружений, а именно к станциям очистки производственно-дождевых сточных вод для переработки дождевых, талых, сточных вод и вод производственного характера.

Изобретение может быть использовано в водоочистке. Станция очистки сточных вод включает три функциональных блока: предварительной очистки, коагуляции-флотации, доочистки и обеззараживания.

Изобретение относится к обработке воды и может быть использовано в области питьевого водоснабжения для глубокой очистки питьевой водопроводной воды. Водоочистительная установка содержит программируемый блок управления 27, фильтры грубой 1 и тонкой 2 механической очистки, первый 3 и второй 4 обратноосмотические мембранные фильтры, насос 5 для перекачивания воды, входной 9 и выходной 33 электромагнитные клапаны, электронный датчик давления 8; вмонтированные в трубопровод по потоку счетчики расхода воды 10,11, 12 с первого по третий, первый 13 и второй 14 узлы контроля концентрации примесей в воде, первый 15 и второй 16 датчики "сухого хода", реле давления 17 очищенной воды, обратный клапан 18, запорные краны 19, 20, 21, 22 с первого по четвертый, манометры 23, 24, 25, 26 с первого по четвертый, камеру ультрафиолетового облучения 7.

Устройство для промывки изделий фотополимерной 3D печати относится к технике фотополимерной 3D печати и предназначено для окончательной обработки изделий, полученных методом фотополимерной 3D печати.

Изобретение может быть использовано в водоочистке. Подготовка сточных вод свеклосахарных заводов для сельскохозяйственного использования осуществляется в две стадии.

Изобретение может быть использовано в водоподготовке для предварительной очистки питьевой воды, оборотных, промышленных и бытовых сточных вод, при обезвоживании осадков.

Изобретение относится к области утилизации концентрированных органических субстратов, пригодных к дальнейшему использованию в условиях производств. Предварительную обработку отходов осуществляют посредством тонкодисперсного измельчения малорастворимых компонентов органических отходов, частичного гидролиза органических веществ, а также внесения в субстрат микрочастиц железа, образующихся за счет истирания рабочего органа в первичном аппарате вихревого слоя.

Изобретение может быть использовано для рекультивации техногенных территорий, загрязненных в результате деятельности предприятий цветной и черной металлургии, объектов по хранению и уничтожению химического оружия, полигонов захоронения промышленных отходов, свалок, для очистки производственных и бытовых сточных вод от мышьяка.

Изобретение относится к очистке сточных вод и может быть использовано для очистки городских стоков, стоков предприятий пищевой промышленности, а также животноводческих и птицеводческих комплексов с последующим их сбросом в водоем.

Изобретения могут быть использованы на станциях водоподготовки для очистки воды от содержащихся в ней взвешенных примесей. Для осуществления способа непрерывно измеряют исходную концентрацию загрязнений в воде до ее поступления в обработку, последовательно вводят загрязненную воду в зону коагуляции, флокуляции и осаждения с подачей в эти зоны необходимого количества коагулянта, балласта и флокулянта, отделяют в верхней части зоны осаждения обработанную воду от смеси осадка и балласта и направляют на гидроциклонное разделение.

Изобретение может быть использовано в сельском хозяйстве для очистки животноводческих стоков. Способ включает предварительную очистку стоков флотацией и центрифугированием, затем очищенные стоки подвергают тонкодисперсному распылению с диаметром капель от 1,0 до 10,0 мкм в озоно-воздушной смесью при концентрации озона 450-500 мг/м3.

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31.

Группа изобретений относится к области очистки сточных вод и может быть использована, преимущественно, в очистных сооружениях промышленных предприятий, стоки которых содержат высокие концентрации загрязняющих веществ различного происхождения.

Изобретение относится к экологии и может быть использовано в жилищно-коммунальном хозяйстве, в промышленности, в сельском хозяйстве, аварийными службами и военными подразделениями для быстрого обеззараживания и быстрой очистки загрязненной воды.
Наверх