Способ построения активной фазированной антенной решётки



Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки
Способ построения активной фазированной антенной решётки

Владельцы патента RU 2697194:

Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") (RU)

Изобретение относится к антенной технике и предназначено для построения активных фазированных антенных решеток (АФАР) для систем радиосвязи и радиолокации. Техническим результатом является снижение потерь принимаемого и передаваемого сигналов. Указанный технический результат достигается за счет того, что размещают антенные элементы на передних панелях многоканальных приемо-передающих модулей (МППМ) в узлах прямоугольной или треугольной сетки с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования соответственно в вертикальной и горизонтальной плоскостях, соединяют каждый излучатель линией связи минимальной длины со входом-выходом одного из каналов МППМ, при этом в передающей части каждого канала устанавливают фазовращатель, а для развязки приемной и передающей частей канала используют циркулятор, формируют антенное полотно активной фазированной антенной решетки из МППМ, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемо-передающих модулей выполняют функцию экрана, формируют сигнал гетеродина, сигнал тактовой частоты дискретизации и распределяют их с помощью распределительной системы на МППМ, в режиме передачи формируют передающий луч с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемо-передающих модулей, в режиме приема выполняют дискретизацию сигнала на промежуточной частоте с выхода приемной части каждого канала приемо-передающего модуля и формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности. 5 ил.

 

Изобретение относится к антенной технике, а именно, к способам построения активных фазированных антенных решеток (АФАР) для систем радиосвязи и радиолокации.

Известен способ построения фазированной антенной решетки (ФАР) [1 - стр. 661, рис. 13.44, Справочник по радиолокации. / Под ред. М.И. Сколника. М.: Техносфера. 2014 г. книга 1. - 672 с.], при котором устанавливают N горизонтальных линеек излучателей, одну над другой и N приемопередатчиков, при этом каждая линейка излучателей содержит М объединенных через делитель мощности излучателей, который в режиме приема работает как сумматор мощности. К входу делителя мощности подключают вход-выход приемопередатчика. Выход формирователя зондирующего сигнала соединяют с делителем мощности по числу линеек излучателей, в каждом приемопередатчике устанавливают фазовращатель. Вход приемной части приемопередатчика соединяют с выходом его передающей части через устройство защиты и циркулятор, а выход - с аналого-цифровым преобразователем.

Недостатком известного способа является наличие потерь принимаемого сигнала в сумматорах пассивных линеек излучателей. Эти потери вносятся перед малошумящим усилителем (МШУ), поэтому вызывают ухудшение чувствительности АФАР в режиме приема.

Наиболее близким по технической сущности к изобретению является способ построения фазированной антенной решетки [2 - стр. 25, рис. 2.3, 2.5 Кузьмин С.З. Цифровая радиолокация. Введение в теорию. Киев. 2000 г. - 420 с.], взятый за прототип, при котором объединяют антенные элементы в пассивные линейные подрешетки, внутри которых каждый антенный элемент соединяют через фазовращатель с сумматором подрешетки, который в режиме передачи используют как делитель мощности, при этом в режиме передачи формируют зондирующий сигнал в блоке формирования сигналов, усиливают его в усилителе мощности, делят по числу подрешеток, распределяют на подрешетки с помощью распределительной системы и устанавливают направление передающего луча с помощью фазовращателей подрешеток. В режиме приема объединяют принимаемые сигналы в подрешетках с помощью сумматоров подрешеток, усиливают их, преобразуют по частоте, преобразуют в цифровую форму и формируют приемную диаграмму направленности (ДН) в системе цифрового диаграммообразования путем весового суммирования сигналов с выходов подрешеток. При этом преобразование в цифровую форму производится квадратурными аналого-цифровыми преобразователями на нулевой частоте, а для развязки приемной и передающей частей используют антенный переключатель.

Недостатком прототипа является использование в антенной решетке пассивных линейных подрешеток, антенные элементы которых объединяются с помощью сумматоров мощности, что в режиме приема ухудшает чувствительность приемной части АФАР, а в режиме передачи снижает мощность излучаемого сигнала. С учетом того, что в сумматорах диссипативные потери составляют, в зависимости от числа антенных элементов и используемого диапазона частот, 0,5…1,5 дБ, это вызывает увеличение коэффициента шума приемной части не менее, чем на 0,5…1,5 дБ. В режиме передачи сумматор работает как делитель мощности, и потери в нем снижают мощность излучаемого сигнала на 0,5…1,5 дБ.

Задачей, на решение которой направлено предлагаемое изобретение, является снижение длины соединений между антенными элементами и приемопередающими модулями (ППМ).

Для решения указанной задачи предлагается способ построения активной фазированной антенной решетки, при котором для излучения и приема сигналов используют антенные элементы, при этом в режиме передачи формируют передаваемый сигнал в блоке формирования сигналов, усиливают его в усилителе мощности, распределяют с помощью распределительной системы, в режиме передачи устанавливают направление передающего луча с помощью фазовращателей, в режиме приема усиливают принимаемые сигналы, преобразуют по частоте, выполняют дискретизацию сигналов и формируют приемную диаграмму направленности путем взвешенного суммирования сигналов в системе цифрового диаграммообразования.

Согласно изобретению, размещают антенные элементы на передних панелях многоканальных приемопередающих модулей в узлах прямоугольной или треугольной сетки, с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования соответственно в вертикальной и горизонтальной плоскостях, соединяют каждый излучатель линией связи минимальной длины со входом-выходом одного из каналов многоканального приемопередающего модуля, при этом в передающей части каждого канала устанавливают фазовращатель, а для развязки приемной и передающей частей канала используют циркулятор, формируют антенное полотно активной фазированной антенной решетки из многоканальных приемопередающих модулей, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемопередающих модулей выполняют функцию экрана, формируют сигнал гетеродина, сигнал тактовой частоты дискретизации, и распределяют их с помощью распределительной системы на многоканальные приемопередающие модули, в режиме передачи формируют передающий луч с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемопередающих модулей, в режиме приема выполняют дискретизацию сигнала на промежуточной частоте с выхода приемной части каждого канала приемопередающего модуля и формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности.

Техническим результатом предлагаемого способа является снижение потерь принимаемого и передаваемого сигналов.

Проведенный сравнительный анализ заявленного способа и прототипа показывает, что их отличие заключается в следующем:

- в прототипе фазированная антенная решетка разделена на пассивные подрешетки, объединяющие антенные элементы с помощью сумматора мощности подрешетки, который в режиме передачи используют как делитель мощности. В то время как в предлагаемом способе антенный элемент соединен линией связи минимальной длины со входом-выходом одного из канала многоканального приемопередающего модуля. Такое построение сокращает потери выходной мощности зондирующего сигнала и снижает коэффициент шума приемной части по сравнению с прототипом;

- в прототипе излучающая система антенной решетки формируется из пассивных антенных линеек, в то же время в предлагаемом способе излучающая система антенной решетки формируется из многоканальных ППМ с установленными на передней панели излучателями, при этом ППМ устанавливают рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях;

- в прототипе электронное сканирование лучей возможно выполнить только в одной плоскости, при расположении пассивных антенных линеек по горизонтали, сканирование возможно только в угломестной плоскости, что сужает функциональные возможности АФАР;

- в прототипе дискретизация принимаемого сигнала производится на нулевой частоте, что требует использования двух аналого-цифровых преобразователей (АЦП), в предлагаемом устройстве дискретизация производится на промежуточной частоте с помощью одного АЦП.

Сочетание отличительных признаков и свойства предлагаемого способа построения активной фазированной антенной решетки из литературы не известно, поэтому он соответствует критериям новизны и изобретательского уровня.

На фиг. 1. приведена структурная схема устройства, обеспечивающего реализацию предложенного способа.

На фиг. 2. приведена структурная схема системы цифрового диаграммообразования.

На фиг. 3. приведена структурная схема блока управления.

На фиг. 4. приведена структурная схема преобразователя частоты.

На фиг. 5. приведена структурная схема модуля управления и цифровой обработки сигналов.

При реализации предложенного способа выполняется следующая последовательность действий:

- размещают антенные элементы на передних панелях многоканальных ППМ в узлах прямоугольной или треугольной сетки, с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования, соответственно, в вертикальной и горизонтальной плоскостях - 1;

- соединяют каждый излучатель линией связи минимальной длины со входом-выходом одного из каналов многоканального приемопередающего модуля, при этом в передающей части каждого канала устанавливают фазовращатель, а для развязки приемной и передающей частей канала используют циркулятор - 2;

- формируют антенное полотно активной фазированной антенной решетки из многоканальных приемопередающих модулей, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялась неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемопередающих модулей выполняют функцию экрана - 3;

- формируют сигнал гетеродина и сигнал тактовой частоты дискретизации и распределяют их с помощью распределительной системы соответственно на входы сигнала гетеродина и сигнала тактовой частоты дискретизации многоканальных приемопередающих модулей - 4;

- в режиме передачи формируют передаваемый сигнал, усиливают его в усилителе мощности, распределяют с помощью распределительной системы на многоканальные приемопередающие модули - 5;

- в режиме передачи устанавливают направление передающего луча с помощью фазовращателей, формируют передающий луч с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемопередающих модулей и излучают его с помощью антенных элементов, подключенных к этим каналам - 6;

- в режиме приема усиливают принимаемые антенными элементами сигналы и преобразуют их по частоте в приемной части каждого канала многоканальных приемопередающих модулей, выполняют дискретизацию сигналов на промежуточной частоте с выхода приемной части каждого канала - 7;

- формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности (ДН) путем взвешенного суммирования сигналов в системе цифрового диаграммообразования - 8.

Реализация предложенного способа построения АФАР возможна, например, с помощью устройства, включающего в себя (фиг. 1) N приемопередающих модулей (ППМ) 1, блок управления (БУ) 2, первый управляющий выход которого подключен к управляющему входу блока формирования сигналов (БФС) 3, второй управляющий выход - ко входу управления системы цифрового диаграммообразования (СЦДО) 4 и N управляющих выходов, подключенных к управляющим входам всех ППМ 1, а вход является входом управления АФАР. Выходы передаваемого сигнала (ПС), сигнала гетеродина FГЕТ и сигнала тактовой частоты дискретизации FД БФС 3 подключены к распределительной системе (PC) 5.

PC 5 имеет N выходов ПС, соединенных со входами ПС ППМ 1, N выходов дискретизации Fд, соединенных со входами дискретизации ППМ 1, N выходов гетеродина Fгет, соединенных с гетеродинными входами ППМ 1.

ППМ 1 содержат первый и второй делители мощности (ДМ) 6 и 7, входы которых являются соответственно передаваемым и гетеродинным входом ППМ 1, модуль управления и цифровой обработки сигналов (МУЦОС) 8, вход дискретизации которого является входом дискретизации ППМ 1, а управляющий вход является управляющим входом ППМ 1. ППМ 1 содержит также М каналов, каждый из которых содержат последовательно соединенные фазовращатель (ФВ) 9, вход которого является входом канала и соединен с одним из М выходов первого делителя мощности 6, а управляющий вход является первым управляющим входом канала и соединен с одним из управляющих выходов МУЦОС 8, циркулятор Ц 10 и антенный элемент (АЭ) 11.

К выходу циркулятора 10 подключены последовательно соединенные малошумящий усилитель (МШУ) 12, преобразователь частоты (ПРЧ) 13, гетеродинный вход которого является гетеродинным входом канала и подключен к одному из М выходов второго делителя мощности 7, управляющий вход является вторым управляющим входом канала и подключен к одному из управляющих выходов МУЦОС 8, а выход является выходом промежуточной частоты (ПЧ) канала и подключен к одному из входов ПЧ МУЦОС 8.

Выход данных МУЦОС 8 является выходом данных ППМ 1 и соединен с одним из N входов данных СЦДО 4, управляющий вход МУЦОС 8 является управляющим входом ППМ 1 и соединен с одним из N управляющих выходов БУ 2.

СЦДО 4 (фиг. 2) имеет K формирователей 14 по числу формируемых лучей, каждый из которых содержит N каналов, при этом входы i-тых каналов в формирователях 14 объединены. Каждый канал формирователя 14 содержит перемножитель 15, первый вход которого является входом канала, ко второму входу подключен выход постоянного запоминающего устройства (ПЗУ) 16, а выход перемножителя 15 является выходом канала и подключен к одному из N входов цифрового сумматора 17, выход которого подключен к одному из К входов интерфейса (И) 18. Выход интерфейса 18 является выходом СЦДО 4. СЦДО 4 может быть выполнено, в зависимости от числа ППМ 1 и числа лучей К, в виде одной или нескольких программируемых логических интегральных схем (ПЛИС).

Блок управления (БУ) 2 (фиг. 3), имеет устройство управления (УУ) 19, вход которого является управляющим входом АФАР. УУ 19 также имеет N+2 управляющих выходов, которые являются управляющими выходами БУ 2. УУ 19 может быть выполнено, в зависимости от числа ППМ 1 и числа лучей К, в виде одной или нескольких программируемых логических интегральных схем (ПЛИС).

ПРЧ 13 (фиг. 4) представляет собой последовательно соединенные смеситель (СМ) 20, вход которого является входом ПРЧ 13, а гетеродинный вход - гетеродинным входом ПРЧ 13 и усилитель промежуточной частоты (УПЧ) 21, выход которого является выходом промежуточной частоты (ПЧ) ПРЧ 13, а управляющий вход - управляющим входом ПРЧ 13.

МУЦОС 8 (фиг. 5) включает в себя М аналого-цифровых преобразователей (АЦП) 22, входы которых являются входами ПЧ МУЦОС 8, тактовые входы подключены к выходам третьего делителя мощности (ДМ) 23, а выходы подключены ко входам блока управления и обработки (БУО) 24. Первый и второй управляющие выходы БУО 24 являются соответственно первым и вторым управляющим выходами МУЦОС 8. Выход данных и управляющий вход БУО 24 являются соответственно выходом данных и управляющим входом МУЦОС 8. Вход третьего делителя мощности 23 является входом дискретизации МУЦОС 8.

БФС 3 представляет собой три синтезатора частоты, обеспечивающих формирование передаваемого сигнала ПС, сигнала тактовой частоты дискретизации Fд, сигнала гетеродина Fгет и усилитель мощности передаваемого сигнала ПС. При этом могут быть использованы, например, синтезаторы и усилители из [3 - стр. 142-143. Mini-Circuits. RF & Microwave components guide. 2010].

PC 5 представляет собой делители мощности, разветвляющие передаваемый сигнал ПС, сигнал тактовой частоты дискретизации Fд, и сигнал гетеродина Fгет на N выходов с помощью делителей мощности [3 - стр. 136-140].

В режиме передачи АФАР формирует передающую диаграмму направленности (ДН) путем установки в ППМ 1 требуемых фазовых соотношений регулировкой сдвига фазы передающего сигнала ПС в фазовращателях 9. При необходимости, амплитудное распределение в АФАР может быть установлено соответствующим выбором делителей мощности в PC 5.

Для случая плоской прямоугольной АФАР, апертура которой содержит Nx АЭ 11, установленных вдоль координаты X на расстоянии dx, и Ny АЭ 11, установленных вдоль координаты Y, на расстоянии dy, диаграмма направленности F(ϕ, θ) определяется как [2 - стр. 27-28]:

где

где Axi, Ayi - коэффициенты амплитудного распределения вдоль координат X и Y соответственно;

ψxi, ψyi - коэффициенты фазового распределения, представленные в виде фазовых сдвигов в фазовращателях 9, соединенных через циркулятор 10 с АЭ 11, которые расположены вдоль координат X и Y соответственно.

После поступления передающего сигнала ПС на подключенный к этому каналу антенный элемент (АЭ) 11 по соединительной цепи минимальной длины он излучается в пространство. После излучения ПС АФАР переходит в режим приема.

В режиме приема принимаемые отраженные сигналы с выхода каждого АЭ 11 в каждом ППМ 1 проходят через циркулятор 10, усиливаются в МШУ 12, преобразуются по частоте в ПРЧ 13 и представляются в виде цифровых отсчетов Smn(t) с помощью АЦП 22.

Из полученных цифровых отсчетов формируют приемную одно- или многолучевую ДН путем взвешенного суммирования в СЦДО 4. Число формируемых лучей определяется назначением АФАР.

Отсчеты i-го луча с направлением максимума ϕi, θi вычисляются путем умножения цифрового потока с каждого ППМ 1 в перемножителях 15 на весовой множитель Wmni, θi) из ПЗУ 16 и суммирования в цифровом сумматоре 17. Диаграмма направленности для i-го луча имеет вид

где

Сформированные отсчеты К приемных лучей с выходов формирователей 14 поступают в интерфейс 18, где преобразуются в последовательную форму и в виде последовательных кодов передаются на выход АФАР.

В предлагаемом способе антенные элементы 11 соединяются линией связи минимальной длины со входом-выходом одного из канала многоканального ППМ 1. Такое построение в режиме приема снижает коэффициент шума приемной части АФАР, по сравнению с прототипом, на величину потерь в сумматоре-делителе мощности из состава антенной линейки прототипа, которые составляют, в зависимости от числа антенных элементов и используемого диапазона частот, не менее чем 0,5…1,5 дБ.

В режиме передачи предлагаемый способ обеспечивает снижение потерь выходной мощности излучаемого сигнала, по сравнению с прототипом, за счет отсутствия сумматора-делителя мощности, на такую же величину 0,5…1,5 дБ.

Работоспособность предлагаемого способа была проверена на макете устройства (фиг. 1). Испытания показали совпадение полученных характеристик с расчетными.

Способ построения активной фазированной антенной решетки, при котором для излучения и приема сигналов используют антенные элементы, при этом в режиме передачи формируют передаваемый сигнал, усиливают его в усилителе мощности, распределяют с помощью распределительной системы, в режиме передачи устанавливают направление передающего луча с помощью фазовращателей, в режиме приема усиливают принимаемые сигналы, преобразуют по частоте, выполняют дискретизацию сигналов и формируют приемную диаграмму направленности путем взвешенного суммирования сигналов в системе цифрового диаграммообразования, отличающийся тем, что размещают антенные элементы на передних панелях многоканальных приемо-передающих модулей в узлах прямоугольной или треугольной сетки с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования, соответственно, в вертикальной и горизонтальной плоскостях, соединяют каждый излучатель линией связи минимальной длины со входом-выходом одного из каналов многоканального приемо-передающего модуля, при этом в передающей части каждого канала устанавливают фазовращатель, а для развязки приемной и передающей частей канала используют циркулятор, формируют антенное полотно активной фазированной антенной решетки из многоканальных приемо-передающих модулей, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемо-передающих модулей выполняют функцию экрана, формируют сигнал гетеродина, сигнал тактовой частоты дискретизации и распределяют их на многоканальные приемо-передающие модули, в режиме передачи формируют передающий луч с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемо-передающих модулей, в режиме приема выполняют дискретизацию сигнала на промежуточной частоте с выхода приемной части каждого канала приемо-передающего модуля и формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности.



 

Похожие патенты:

Изобретение относится к области формирования ключа шифрования/дешифрования. Техническим результатом является разработка способа формирования ключа шифрования/дешифрования, обеспечивающего повышение стойкости сформированного ключа шифрования/дешифрования к компрометации со стороны нарушителя.

Изобретение относится к антенной технике. Антенна содержит средство излучения сигнала, первое средство распределения сигнала для генерирования, из введенного первого сигнала, вторых сигналов в количестве N, имеющих разность фаз от одного к другому, и вывода вторых сигналов в количестве N на антенные элементы в количестве N соответственно, так что спиральный пучок с поверхностью равных фаз, наклоненной по спирали, выводится из средства излучения сигнала и второе средство распределения сигнала для приема третьего сигнала, имеющего фазу, ортогональную фазе первого сигнала, и вывода четвертых сигналов в количестве N, имеющих фазы, ортогональные фазам вторых сигналов, так что ортогонально поляризованные волны спирального пучка формируются средством излучения сигнала.

Изобретение относится к области микроволновых аналоговых устройств для сдвига фазы, в частности к микроволновому аналоговому фазовращателю, основанному на настраиваемых емкостях.

Изобретение относится к области антенной техники СВЧ и может быть использовано для создания систем управления лучом (СУЛ) фазированных антенных решеток (ФАР) с командным методом управления, построенных по модульному принципу, с повышенными требованиями к скорости переключения луча.

Изобретение относится к области антенных систем и может быть использовано в системах спутниковой и мобильной связи СВЧ диапазона с активными фазированными антенными решетками с управляемой диаграммой направленности в дуплексном режиме.

Изобретение относится к области фазированных антенных решеток (ФАР) с электронным сканированием луча, в частности к системам управления лучом и формирования диаграммы направленности (ДН), к системам фазирования на основе командного метода управления ферритовыми фазовращателями (ФВ), переключателями поляризаций (ПП), и может быть использовано при создании многоэлементных антенных систем с высокой скоростью сканирования луча с минимальным количеством управляющих проводников в антенной системе и с высокой надежностью функционирования, также для снижения стоимости антенной решетки (АР) за счет использования и установки ферритовых ФВ в АР без их предварительного отбора и разбраковки по фазовременным, фазотемпературным характеристикам с возможностью в дальнейшем поэлементной индивидуальной настройки и калибровки каналов в составе собранной АР, также для минимизации энергии перемагничивания ферритовых ФВ и ПП путем реализации алгоритма адаптивного формирования индивидуальной длительности импульсов сброса с учетом результатов измерения длительности импульса тока намагничивания ФВ (ПП) по предельному циклу петли гистерезиса.

Изобретение относится к антенной технике и может быть использовано во многих системах связи при передаче и/или приеме по меньшей мере двух сигналов, при этом первый один из указанных сигналов формируется в частотном диапазоне первого оператора первым оператором, а второй один из указанных сигналов формируется в частотном диапазоне второго оператора вторым оператором.

Изобретение относится к антенной технике . .

Изобретение относится к технике связи и увеличивает отношение сигнал/помеха . .

Изобретение относится к передающему/приемному элементу для активной антенной системы с электронным управлением. Передающий/приемный элемент (SE) для активной антенной системы (ASys) с электронным управлением, содержащий передающий тракт (SP), приемный тракт (ЕР), а также однополюсные переключатели (U1, U2, U3) с общим средним выводом (UM1, UM2, UM3) и с двумя выводами (UA1_1, UA1_2; UA2_1, UA2_2; UA3_1, UA3_2) для переключения между передающим трактом (SP) и приемным трактом (ЕР), причем между общими средними выводами (UM1, UM2) первого и второго однополюсного переключателя (U1, U2) расположены несколько амплитудных регуляторов (AS1,…,N) и несколько фазовых регуляторов (PS1,…,n), отличающийся тем, что предусмотрены однополюсные многопозиционные переключатели (MW1, MW2) с общим средним выводом (MMW1, MMW2) и числом N выводов (A1,…N, B1,…N), причем общий средний вывод (UM1, UM2) первого или же второго однополюсного переключателя (UA1, UA2) соединен с общим средним выводом (MMW1, MMW2) первого или же второго однополюсного многопозиционного переключателя (MW1, MW2), и между каждым выводом (A1,…N, B1,…N) из числа N выводов (A1,…N, B1,…N) первого (MW1) и второго (MW2) многопозиционного переключателя подключен в каждом случае амплитудный регулятор (AS1,…,N) и фазовый регулятор (PS1,…,n).

Изобретение относится к средствам связи и может использоваться в радиолокационной технике для определения координат цели с помощью моноимпульсного метода пеленгации.

Изобретение относится к радиотехнике, а именно к всенаправленным антеннам. .

Предлагаемое устройство относится к антенным решеткам и может быть использовано в радиолокации, радиосвязи. Адаптивная антенная решетка с предварительным формированием диаграмм направленности каналов, содержащая излучатели, многоканальную диаграммообразующую схему и адаптивный процессор, отличающаяся тем, что диаграммообразующая схема состоит из шестиполюсных и восьмиполюсных делителей мощности, причем один вход восьмиполюсных делителей мощности используется в диаграммообразующей схеме наравне с входами шестиполюсных делителей мощности для формирования по ее главному входу требуемой в условиях отсутствия внешних источников помехи диаграммы направленности, а вторые, развязанные с первыми, входы восьмиполюсных делителей мощности подключены к адаптивному процессору, к которому подключен также и главный вход диаграммообразующей схемы.

Изобретение относится к области антенной техники. Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки, включающий прием или излучение сигналов фазированной антенной решеткой, при этом сигналы переносятся электромагнитным полем.

Изобретение относится к антенной технике и может быть использовано в системах радиосвязи при приеме сигналов в условиях воздействия помех, источники которых находятся в движении.

Изобретение относится к области радиотехники, в частности к области антенной техники, и может использоваться в составе панорамных радиоприемных устройств при контроле радиоэлектронной обстановки и оценке параметров сигналов источников радиоизлучений.

Изобретение относится к беспроводной связи. Технический результат – улучшение формы ячейки для балансировки нагрузки.

Изобретение относится к области техники СВЧ и может быть использовано как индивидуальный уединенный излучатель, так и как базовый элемент ФАР радиолокационных систем с линейной поляризацией излучаемых радиоволн.

Изобретение относится к радиолокации. Техническим результатом является эффективное обнаружение затенения антенны транспортного средства.

Изобретение относится к радиотехнике и может быть использовано в средствах радиотехнического контроля (РТК) с многолучевыми адаптивными антенными решетками. Способ синтеза многолучевой саофокусирующейся адаптивной антенной решетки (МЛ СФААР) с использованием параметрической модели спектра пространственных частот (СПЧ) сигналов источников излучения (ИИ) включает задание исходных данных по количеству антенных элементов (АЭ), их характеристиках, положению в пространстве и типу диаграммообразующей схемы (ДОС), с последующим построением адаптивного процессора (АП) МЛ СФААР, вычисляющего вектор весовых коэффициентов МЛ СФААР, при котором отношение сигнал/помеха + шум на выходе антенны максимально.

Изобретение относится к антенной технике и предназначено для построения активных фазированных антенных решеток для систем радиосвязи и радиолокации. Техническим результатом является снижение потерь принимаемого и передаваемого сигналов. Указанный технический результат достигается за счет того, что размещают антенные элементы на передних панелях многоканальных приемо-передающих модулей в узлах прямоугольной или треугольной сетки с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования соответственно в вертикальной и горизонтальной плоскостях, соединяют каждый излучатель линией связи минимальной длины со входом-выходом одного из каналов МППМ, при этом в передающей части каждого канала устанавливают фазовращатель, а для развязки приемной и передающей частей канала используют циркулятор, формируют антенное полотно активной фазированной антенной решетки из МППМ, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемо-передающих модулей выполняют функцию экрана, формируют сигнал гетеродина, сигнал тактовой частоты дискретизации и распределяют их с помощью распределительной системы на МППМ, в режиме передачи формируют передающий луч с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемо-передающих модулей, в режиме приема выполняют дискретизацию сигнала на промежуточной частоте с выхода приемной части каждого канала приемо-передающего модуля и формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности. 5 ил.

Наверх