Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете. При этом определяют предельное значение амплитуды и постоянной времени. Для определения систолического давления на систолической части осциллограммы регистрируют постоянную времени по калибровочной характеристике. Калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона. Калибровочной характеристикой служит функция предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени, выбранной произвольно, и связывающая эталонную и измеренную характеристику за счет нормирования измеренных значений известными. По калибровочной характеристике находят действительные значения постоянной времени и предельного значения амплитуды осциллограммы, по которым последовательно строят калибровочную характеристику, эталонную характеристику и определяют систолическое давление, аналогично находят диастолическое давление. Изобретение обеспечивает повышение метрологической эффективности за счет исключения метрологической и динамической погрешности по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно. 4 ил.

 

Предполагаемое изобретение относится к медицине, в частности к физиологии и кардиологии, может быть использовано как в клинических, так и в экспериментальных исследованиях.

Известен способ определения артериального давления (АД) методом Короткова [Медицинские приборы. Разработка и применение / Под ред. Ревенко С.В. - М.: Медицинская книга, 2004. - С. 326-330], по которому измеряют диастолическое и систолическое артериальное давление.

Недостатками этого решения являются необходимость создания высоких уровней давления в пережимной манжете, превышающих величину систолического давления в артерии, а также то, что между измерением диастолического и систолического давления проходит время не менее 15-20 с. Таким образом, измеряемые величины давления относятся к сердечным циклам, отстоящим далеко друг от друга.

Известен также тахоосциллографический метод (ТО) измерения АД, предложенный Н.Н. Савицким [Савицкий Н.Н. Некоторые методы исследования и функциональной оценки системы кровообращения. Медгиз, 1956]. В основе ТО метода лежит принцип измерения изменения объема конечности, которое происходит под действием пульсирующего тока крови в магистральных сосудах. Этот метод позволяет измерять диастолическое (Рмин), среднее динамическое (Рср), боковое систолическое (Рбс) и конечное (Рмакс) систолические давления в магистральном артериальном сосуде конечности, на которую наложена пережимная измерительная манжета. По указанным выше значениям АД рассчитывают величины пульсового (dP, Рбс, Рмин) и ударного (Руд, Рмакс, Рбс) АД. Погрешность измерения первых четырех показателей АД по данным автора составляет 5 мм рт.ст. при скорости подъема давления в пережимной манжете 4-5 мм рт.ст./с.

Недостатком этого способа является ряд инструментальных и методических недоработок, которые резко увеличивают погрешность измерений.

За прототип принят осциллографический способ измерения артериального давления [см. патент №2441581 РФ, кл. А61В 5/022, БИ от 10.02.2012 г.], включающий регистрирацию и анализ осциллограмм артерий в частотах от 0-0,1 Гц до 40-60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до появления волн ОСГ. Определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете. При этом определяют предельное значение амплитуды и постоянной времени. Для определения систолического давления на систолической части осциллограммы регистрируют текущую амплитуду в первый момент времени и измеряют вторую амплитуду в кратный момент времени от первоначального значения времени. По двум значениям амплитуды и моментам времени находят предельное значение амплитуды и постоянную времени, по которым определяют систолическое давление, затем аналогично находят диастолическое давление.

Недостатком прототипа является низкая точность измерений за счет измерения по калибровочной характеристике с известными параметрами, которые на практике, как правило, неизвестны и изменяются нелинейно, компенсируя неопределенность другого параметра, выбранного произвольно.

Технической задачей способа являются повышение метрологической эффективности за счет исключения методической и динамической погрешности по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно.

Поставленная техническая задача достигается тем, что в способе определения артериального давления включающем регистрацию и анализ осциллограмм артериальных сосудов в процессе нарастания давления в пережимной измерительной манжете с последующим электрическим преобразованием, регистрацию и анализ объемной осциллограммы (ОСГ) артериальных сосудов производят в полосе частот от 0-0,1 Гц до 40-60 Гц, компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ, определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете, определяют предельное значение амплитуды и постоянной времени, в отличие от прототипа, для определения систолического давления на систолической части осциллограммы регистрируют постоянную времени по калибровочной характеристике, калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени, выбранной произвольно, и связывающая эталонную и измеренную характеристику за счет нормирования измеренных значений известными, по калибровочной характеристике находят действительные значения постоянной времени и предельного значения амплитуды осциллограммы, по которым последовательно строят калибровочную характеристику, эталонную характеристику и определяют систолическое давление, аналогично находят диастолическое давление.

1. Определяют постоянную времени Т0 по калибровочной функции U0i.

2. Калибровку проводят априори для известных эталонных UЭ (фиг. 1 кривая 1) и измеренных U (фиг. 1 кривая 2) значений артериального давления.

3. Калибровочной характеристикой служит характеристика U0i предельной амплитуды осциллограммы, компенсирующая неопределенность постоянной времени Т*, выбранной произвольно, и связывающая эталонную UЭ и измеренную U зависимости за счет нормирования измеренных значений известными

По калибровочной характеристике U0i восстанавливают характеристику U (t), тождественную эталонной

которая максимально приближена к эталонной кривой UЭ(t):

Эталонная характеристика UЭ(t) и характеристика, ей тождественная, U (t) получены из экспоненциальной динамической характеристики с искомыми информативными параметрами U0, Т0:

где T0 - постоянная времени и U0 - предельное значение амплитуды. Физический смысл информативных параметров следует из предельных соотношений:

т.е. U0 - предельное напряжение крови для t=0,

т.е. Т0 - постоянная времени.

На практике один из информативных параметров исследуемой характеристики, как правило, неизвестен. В этом случае один параметр задается произвольно Т*, а второй принимает вид функции U0i, которая компенсирует незнание первого информативного параметра. С помощью этой функции калибруется измеренная характеристика.

Задаем произвольно параметр T*=const вместо неизвестного действительного значения постоянной времени Т0. Для компенсации произвольности константы Т* предельное значение амплитуды U0 превратится в характеристику U0i, компенсирующую незнание постоянной времени Т0. Калибровочной функцией для известных параметров Т0, U0 служит экспоненциальная динамическая характеристика (1).

Калибровочную характеристику U0i выразим из системы уравнений с известными параметрами T0, U0 характеристики UЭ(t), являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики и (t)=Ui, являющейся измеренной, с произвольной константой Т* и характеристикой U0i:

Поделим одно уравнение системы на другое, чтобы выразить калибровочную характеристику:

В соответствии с закономерностями калибровки и tЭ=t следует калибровочная характеристика U0i, связывающая между собой эталонную и измеренную кривые:

Следовательно, калибровочной характеристикой служит функция предельного значения амплитуды, компенсирующая неопределенность постоянной времени, выбранной произвольно (фиг. 1, кривая 3).

4. По калибровочной характеристике U0i находят действительные значения постоянной времени Т0 и предельного значения амплитуды U0, которые являются информативными параметрами, доставляющими оптимум калибровочной характеристике. Из характеристики (4) составим систему уравнений для i=1,2:

Поделив одно уравнение системы (5) на другое и прологарифмировав, определяют алгоритм постоянной времени Т0:

Следовательно, алгоритм (6) оптимизации постоянной времени регламентирован отношением диапазона времени к логарифму измеренных амплитуд границ осциллограммы в кратные моменты времени.

Выразив Т0 из первого и второго уравнений системы (5) и приравняв их друг другу

находят алгоритм определения предельного значения амплитуды осциллограммы:

Следовательно, алгоритм (7) оптимизации предельного значения амплитуды осциллограммы регламентирован отношением измеренных амплитуд границ осциллограммы в кратные моменты времени.

5. По действительным значениям постоянной времени Т0 и предельного значения амплитуды осциллограммы U0, последовательно строят калибровочную характеристику U0i предельного напряжения крови и эталонную характеристику UЭ. Результатом калибровки служит тождественность измеряемой характеристики U эталонной UЭ, т.е. U≡UЭ.

Для информативных параметров (6) и (7) строят (аппроксимируют) калибровочную характеристику U0i (4) (фиг. 1 кривая 3), по которой находят согласно (3) действительную Udi характеристику (фиг. 2, точки), тождественную эталонной Uэi (фиг. 2, линия) искомой характеристике, когда Udi=Uэi.

6. Измеряют систолическое давление, (фиг. 3)

Аппроксимируя осциллограмму по зависимости (2), вводят меру отсчета, которая равна постоянной времени TS.

Для систолической части модели t=TS, поэтому для измеряемого давления Р=νt по линейному закону:

где ν - скорость линейного набора давления в пережимной измерительной манжете.

7. Измерение диастолического давления.

Аналогично для диастолической части вводят меру отсчета, которая равна постоянной времени TD, и измеряют диастолическое давление:

PD=νt.

Адекватность предлагаемого способа физике эксперимента доказывает математическое моделирование действительной характеристики, относительно эквивалента экспериментальной характеристики, по полученным значениям.

Проводят оценку адекватности полученных зависимостей по формуле определения относительной погрешности:

ее оценка представлена на фиг. 4а.

При задании произвольного значения T*=const, отличного от эталонного Т0, предельное значение амплитуды осциллограммы U0 превращается в функцию, которая компенсирует незнание значения Т0. Эталонная и действительная характеристики тождественны (погрешность порядка 2*10-8 (фиг. 4 а), что доказывает эффективность применения калибровки.

Эффективность по точности предлагаемого решения - постоянная величина единичного уровня, а для прототипа - определяется нелинейностью η (см. фиг. 4б) калибровочной характеристики Ui:

Нелинейность (9) прототипа регламентирует методическую погрешность (см. фиг. 4б) для известных параметров U0, Т0 эквивалента, но на практике, как правило, один из параметров неизвестен. Его выбирают произвольно T*. При этом второй параметр из константы U0 принимает вид функции Uoi (фиг. 1, кривая 3), которая компенсирует незнание параметра Т0, что исключает методическую погрешность (9) характеристики. Это следует из тождественности эквиваленту действительной характеристики (фиг. 2).

Таким образом, определение артериального давления по калибровочной характеристике предельной амплитуды осциллограммы, компенсирующей неопределенность постоянной времени, выбранной произвольно, в отличие от известных решений (фиг. 4б), повышает точность определения артериального давления на несколько порядков за счет адекватности предлагаемого способа эксперименту при отсутствии методической и динамической погрешностей.

Способ измерения артериального давления, включающий регистрацию и анализ осциллограмм артериальных сосудов в процессе нарастания давления в пережимной измерительной манжете с последующим электрическим преобразованием, регистрацию и анализ объемной осциллограммы (ОСГ) артериальных сосудов производят в полосе частот от 0-0,1 Гц до 40-60 Гц, компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ, определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете, а также предельное значение амплитуды и постоянной времени, отличающийся тем, что для определения систолического давления на систолической части осциллограммы регистрируют постоянную времени по калибровочной характеристике, калибровку проводят априори для двух измеренных U1, U2 и известных значений U01, U02 верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция U0i предельной амплитуды осциллограммы

компенсирующая неопределенность постоянной времени Т0, выбранной произвольно и связывающая эталонную UЭ и измеренную Ui характеристики

где U0 - предельная амплитуда и U0i - калибровочная характеристика; Т0 - действительная и - произвольная постоянная времени; tЭ - эталонный и ti=tЭ - измеренный интервалы времени для i=1, 2; за счет нормирования измеренных U1, U2 значений известными U01, U02, по калибровочной U0i характеристике находят действительные значения постоянной времени Т0 и предельного значения амплитуды U0 осциллограммы

- U1, U2 - измеренные и U01, U02 - известные значения предельной амплитуды; - t1, t2 - интервалы и кратность k=t1/t2 - времени измерения для k=2,n; по которым последовательно строят калибровочную U0i характеристику, эталонную характеристику UЭ и определяют систолическое давление, аналогично находят диастолическое давление.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам оптического анализа. Система оптического анализа для измерения частоты сердечных сокращений и насыщения крови кислородом содержит источник света для освещения анализируемого образца, драйвер для управления источником света, фотодетектор для приема света, отраженного анализируемым образцом или прошедшего через него, и генерирования сигнала датчика, первую схему обработки сигнала для обработки сигнала датчика, содержащую трансимпедансный усилитель, вторую схему обработки сигнала для обработки электрического сигнала, поступающего от драйвера и характеризующего сигнал управления, подаваемый на источник света, причем вторая схема обработки сигнала содержит фильтр с частотной характеристикой фильтра, соответствующей частотной передаточной характеристике трансимпедансного усилителя, и схему компенсации для последующей обработки сигнала датчика для улучшения соотношения сигнал-шум с использованием обработанного электрического сигнала.

Группа изобретений относится к медицинской технике, а именно к средствам оптического анализа. Система оптического анализа для измерения частоты сердечных сокращений и насыщения крови кислородом содержит источник света для освещения анализируемого образца, драйвер для управления источником света, фотодетектор для приема света, отраженного анализируемым образцом или прошедшего через него, и генерирования сигнала датчика, первую схему обработки сигнала для обработки сигнала датчика, содержащую трансимпедансный усилитель, вторую схему обработки сигнала для обработки электрического сигнала, поступающего от драйвера и характеризующего сигнал управления, подаваемый на источник света, причем вторая схема обработки сигнала содержит фильтр с частотной характеристикой фильтра, соответствующей частотной передаточной характеристике трансимпедансного усилителя, и схему компенсации для последующей обработки сигнала датчика для улучшения соотношения сигнал-шум с использованием обработанного электрического сигнала.

Группа изобретений относится к медицинской технике, а именно к средствам оптического анализа. Система оптического анализа для измерения частоты сердечных сокращений и насыщения крови кислородом содержит источник света для освещения анализируемого образца, драйвер для управления источником света, фотодетектор для приема света, отраженного анализируемым образцом или прошедшего через него, и генерирования сигнала датчика, первую схему обработки сигнала для обработки сигнала датчика, содержащую трансимпедансный усилитель, вторую схему обработки сигнала для обработки электрического сигнала, поступающего от драйвера и характеризующего сигнал управления, подаваемый на источник света, причем вторая схема обработки сигнала содержит фильтр с частотной характеристикой фильтра, соответствующей частотной передаточной характеристике трансимпедансного усилителя, и схему компенсации для последующей обработки сигнала датчика для улучшения соотношения сигнал-шум с использованием обработанного электрического сигнала.

Группа изобретений относится к медицинской технике, а именно к средствам оптического анализа. Система оптического анализа для измерения частоты сердечных сокращений и насыщения крови кислородом содержит источник света для освещения анализируемого образца, драйвер для управления источником света, фотодетектор для приема света, отраженного анализируемым образцом или прошедшего через него, и генерирования сигнала датчика, первую схему обработки сигнала для обработки сигнала датчика, содержащую трансимпедансный усилитель, вторую схему обработки сигнала для обработки электрического сигнала, поступающего от драйвера и характеризующего сигнал управления, подаваемый на источник света, причем вторая схема обработки сигнала содержит фильтр с частотной характеристикой фильтра, соответствующей частотной передаточной характеристике трансимпедансного усилителя, и схему компенсации для последующей обработки сигнала датчика для улучшения соотношения сигнал-шум с использованием обработанного электрического сигнала.

Группа изобретений относится к медицинской технике. Оптический источник для направления света на целевое место пациента содержит по меньшей мере один источник света, выполненный с возможностью излучения красного и инфракрасного света.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для определения диастолической дисфункции правого желудочка. У пациентов с отсутствием в анамнезе заболеваний печени проводят полигепатографическое исследование портопеченочной гемодинамики.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для определения диастолической дисфункции правого желудочка. У пациентов с отсутствием в анамнезе заболеваний печени проводят полигепатографическое исследование портопеченочной гемодинамики.

Группа изобретений относится к медицине, а именно к непрерывной неинвазивной оценки артериального давления человека на основе данных о характере изменений скорости кровотока в артериях, полученных с помощью ультразвукового доплеровского анализатора спектра скорости кровотока.

Изобретение относится к медицине, а именно к оториноларингологии, и может быть использовано для прогнозирования эффективности антибактериальной лекарственной терапии простой и токсико-аллергической форм хронического тонзиллита у лиц 18-35 лет.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для прогнозирования риска развития артериальной гипертонии при метаболическом синдроме у практически здоровых мужчин призывного возраста.
Наверх