Способ электроэрозионной обработки детали

Изобретение относится к электроэрозионным методам обработки материалов и может быть использовано для высокоточной обработки деталей из металлов и сплавов со сложными поверхностями. Способ включает электроэрозионную обработку детали в диэлектрической жидкости с нагревом поверхности электрода-инструмента до температуры плавления импульсами тока наносекундной длительности, равной времени перемыкания стримером межэлектродного промежутка, суммированной с временем нагрева поверхности электрода-инструмента до температуры плавления tимп.т=S/Vстр+tпл, где tимп.т - длительность импульса тока, S - межэлектродный промежуток, Vстр - скорость развития стримера, tпл - время нагрева поверхности электрода-инструмента до температуры плавления. Изобретение направлено на радикальное устранение износа электрода-инструмента за счет наносекундного контакта проводящего канала, сформированного стримером с поверхностью электрода-инструмента. 2 ил.

 

Изобретение относится к электроэрозионным методам обработки материалов и может быть использовано для высокоточной обработки деталей со сложными поверхностями из машиностроительных материалов (металлов и сплавов) в общем машиностроении, приборостроении, станкостроении и других отраслях машиностроения при радикальном устранении износа электрода-инструмента.

Известны способы электроэрозионной обработки металлов и сплавов (Библиотечка электротехнолога. Выпуск 2. Электроразрядная обработка материалов. Левинсон Е.М., Лев B.C., Гудкин В.Г., Лившиц А.Л., Юткин Л.А. Л., Машиностроение. 1971 г. 256 стр. Табл 26. Илл. 135. Библ. 60 назв.). В указанной книге описаны способы, технологические схемы, физические основы, режимы и технологическое оснащение электроэрозионной обработки. Приведены данные о зависимости износа электродов-инструментов от длительности импульсов напряжения.

Электроэрозионная обработка осуществляется за счет управляемого удаления расплавленного или испаренного металла или сплава с отрабатываемой заготовки за счет создания плазменного канала между двумя электродами при приложении внешнего напряжения, разделенными диэлектрической жидкостью. Один из электродов является инструментом, а второй обрабатываемой заготовкой.

Недостатком описанного метода является длительное формирование плазменного канала, что приводит к существенному нагреву обоих электродов. Из литературы известно, что в плазменном канале температура может достигать 15-40 т. градусов Кельвина. Такой существенный нагрев электрода-заготовки обеспечивает формирование эрозионных лунок и необходимое формообразование. Вместе с тем тепловой процесс на поверхности электрода-инструмента приводит к его износу, что является существенным недостатком метода.

Плазменный канал, формируемый в рабочей жидкости, может возникать по двум механизмам:

1. Тепловому механизму пробоя межэлектродного промежутка;

2. Электрическому механизму пробоя межэлектродного промежутка.

Тепловой механизм пробоя имеет место при небольшой напряженности электрического поля в межэлектродном промежутке (до 36 кВ/см). Такой механизм пробоя наиболее хорошо изучен и имеет место в основном при использовании релаксационных генераторов импульсов и достаточно большой их длительности (до сотен микросекунд).

Электрический механизм пробоя имеет место при большой напряженности электрического поля в межэлектродном промежутке (более 36 кВ на см2) и заключается в формировании электрического стримера. Известно, что стример развивается со скоростью 1-2 км/с. В большинстве случаев стример развивается с одного из электродов. При межэлектродном зазоре равном 5-40 мкм происходит его перемыкание электропроводным плазменным каналом (стримером) за 3-7 нс. Такое малое время формирования плазменного канала пробоя ранее не рассматривалось, так как широко применявшиеся генераторы импульсов тока релаксационного типа не позволяли осуществлять электрический пробой межэлектродного промежутка из-за недостаточной мощности таких генераторов при наносекундной длительности импульсов тока.

В свою очередь транзисторные генераторы импульсов тока не позволяли получать до последнего времени такие короткие импульсы из-за отсутствия соответствующей электронной базы.

Известен способ электроэрозионной обработки в котором радикальное устранение износа электрода-инструмента достигается применением импульса тока с предварительной и силовой ступенями, что способствует созданием условий для формирования защитной пленки на электроде-инструменте, непозволяющей достигать температуры плавления его материала (А.С. №515614 В23Р 1/02 Опубликовано 30.05.76 Бюллетень №20, 28.06.76.).

Недостатком известного способа является наличие износа электрода-инструмента.

Задачей предлагаемого способа обработки является радикальное устранение износа электрода-инструмента за счет наносекундного контакта проводящего канала, сформированного стримером, с поверхностью электрода-инструмента.

Способ электроэрозионной обработки, производимый в диэлектрической жидкости с нагревом поверхности электрода-инструмента до температуры плавления импульсами тока наносекундной длительности, равной времени перемыкания стримером межэлектродного промежутка, суммированной с временем нагрева поверхности электрода-инструмента до температуры плавления тимп.т=S/Vстp.+tпл., где tимп.т. - длительность импульса тока, S - межэлектродный промежуток, Vстр - скорость развития стримера, tпл - время нагрева поверхности электрода-инструмента до температуры плавления.

Способ осуществляется следующим образом: импульсы тока наносекундной длительности обеспечивают создание плазменного канала только на период времени до касания стримером противоположного электрода-инструмента, суммированного с временем нагрева поверхности электрода-инструмента до температуры плавления tимп.т.=S/Vcтp.+tпл. (фиг. 1, фиг. 2).

На Фиг. 1 показан процесс формирования проводящего плазменного канала движущимся стримером в межэлектродном зазоре, заполненном диэлектрической жидкостью, до момента касания противоположного электрода.

На Фиг. 2 показан процесс обработки после перемыкания межэлектродного зазора стримером до момента нагрева материала электрода-инструмента до температуры его плавления.

Исходя из того, что межэлектродный зазор при электроэрозионной обработке в большинстве случаев может составлять от 5-40 мкм, время, необходимое для достижения головкой стримера противоположного по отношению к электроду-детали электрода-инструмента, составит t=S/Vcтp., где S - межэлектродный промежуток, мкм; Vстр - скорость развития стримера, км/с.

После достижения головкой стримера поверхности электрода-инструмента возможно продолжение процесса обработки в течение времени tпл., до температуры плавления материала электрода-инструмента. Предварительный расчет показал, что это время может составить несколько наносекунд (2-9 нс).

Таким образом, длительность импульса тока составит tимп.т.=S/Vcтp.+tпл..

Предлагаемый способ электроэрозионной обработки был апробирован при использовании следующих параметров обработки: S=5 мкм, tимп.т.=9 нс, U=150 В. В результате обработки установлено, что на электроде-заготовке образуются эрозионные лунки со средним диаметром около 2,5 мкм. Электрод-инструмент практически не имел значимого износа.

Способ электроэрозионной обработки детали, включающий обработку детали в диэлектрической жидкости импульсами тока с нагревом поверхности электрода-инструмента до температуры плавления, отличающийся тем, что обработку осуществляют импульсами тока наносекундной длительности, равной времени перемыкания стримером межэлектродного промежутка, суммированной с временем нагрева поверхности электрода-инструмента до температуры плавления:

tимп.т=S/Vстр+tпл, где

tимп.т - длительность импульса тока,

S - межэлектродный промежуток,

Vстр - скорость развития стримера,

tпл - время нагрева поверхности электрода-инструмента до температуры плавления.



 

Похожие патенты:

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в дистиллированной воде при ёмкости разрядных конденсаторов 55 мкФ, напряжении 100 В и частоте импульсов 140 Гц.

Изобретение относится к электроэрозионной обработке отверстий полым электрод-инструментом. Устройство содержит блок коммутации с электромагнитными клапанами, электронно-вычислительную машину, датчики межэлектродного промежутка, гидравлическую магистраль низкого давления смазочно-охлаждающего технологического средства и пневматическую магистраль.

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5 мкФ.

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном.

Изобретение относится к получению порошка кобальтохромового сплава КХМС. Проводят электроэрозионное диспергирование сплава КХМС в бутаноле посредством воздействия на него кратковременных электрических разрядов между электродами при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 110-130 Гц с получением порошка кобальтохромового сплава.

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию (ЭЭЛ) и может быть использовано для обработки поверхностей термообработанных деталей.

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей.

Изобретение относится к области машиностроения и может быть использовано для упрочнения поверхностей металлических деталей, например пар трения. Способ эрозионно-лучевого упрочнения поверхности металлической детали включает одновременное электроэрозионное нанесение с помощью электрода-инструмента на поверхность детали гранул износостойкого сплава, нанесение микропорошка вязкого материала слоем, толщина которого не превышает размеров упомянутых гранул, и оплавление микропорошка путем лучевого нагрева.

Изобретение относится к области порошковой металлургии, в частности к получению порошка титана, и может быть использовано в авиа- и ракетостроении, в кораблестроении.
Наверх