Магнитный опорный узел

Изобретение относится к опорным устройствам и подшипникам с постоянными магнитами и может быть использовано преимущественно для вращающихся валов и роторов машин с мало меняющейся и постоянной внешней осевой нагрузкой, таких как вентиляторы, турбокомпрессоры, электродвигатели, маховики (накопители энергии), гироскопы и т.п. Магнитный опорный узел содержит ротор (1, 2) с опорным и выходным концами, статор (3), две радиальные магнитные опоры ротора с кольцевыми магнитами (6, 8 и 7, 9) и осевой упор (5), воздействующий на торец опорного конца ротора (1, 2). Каждая радиальная магнитная опора содержит не менее двух кольцевых магнитов, имеющих одинаковые размеры и одинаковое направление осевой намагниченности. Магниты каждой опоры (6, 8 и 7, 9) взаимодействуют в режиме притяжения через осевой зазор. Магниты статора (8 и 9) размещены между магнитами ротора (6 и 7). Ротор с помощью упора (5) смещен в осевом направлении в сторону, противоположную направлению внешней осевой нагрузки (F), с образованием разных осевых зазоров (s1 и s2) в магнитных опорах. Технический результат: упрощение конструкции магнитной опоры и снижение трения. 4 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к опорным устройствам и подшипникам с постоянными магнитами и может быть использовано преимущественно для вращающихся валов и роторов машин с мало меняющейся и постоянной внешней осевой нагрузкой, таких как вентиляторы, турбокомпрессоры, электродвигатели, маховики (накопители энергии), гироскопы и т.п.

Известен опорный узел, содержащий бесконтактную магнитную радиальную опору вала и осевой механический упор [1]. В данной конструкции ротор установлен вертикально. Осевую нагрузку на упор уменьшают путем уравновешивания веса ротора осевой силой притяжения в магнитной радиальной опоре. Недостатком данного технического решения является наличие трения в зоне контакта механического упора и корпуса. Трение вызвано неуравновешенной радиальной нагрузкой. Этот недостаток усугубляется при использовании устройства в горизонтальном и любом другом, кроме вертикального, пространственном положении.

Наиболее близким к настоящему изобретению является магнитный опорный узел, содержащий ротор с опорным и выходным концами, статор, две радиальные магнитные опоры ротора с кольцевыми коаксиальными магнитами, установленными на роторе и статоре, и осевой упор, воздействующий на торец опорного конца ротора [2].

Техническое решение опорного узла исключает недостатки аналога. Ротор может быть размещен в горизонтальном и ином пространственном положении с обеспечением минимального трения в контактной зоне упора.

Недостатком прототипа, во-первых, является сложность технического решения. Для стабилизации ротора в осевом направлении и уравновешивания внешних осевых нагрузок используется специальная дополнительная группа магнитов. Во-вторых, дополнительные магниты создают толкающее усилие, которое действует на ротор не только в осевом направлении. При малейшем радиальном смещении ротора возникает радиальная сила, которая воспринимается радиальной опорой. Это снижает ее жесткость и несущую способность.

Настоящее изобретение направлено на устранение недостатков прототипа.

Новый магнитный опорный узел, также как и прототип, содержит ротор с опорным и выходным концами, статор, две радиальные магнитные опоры ротора с кольцевыми магнитами, установленными на роторе и статоре, и осевой упор, воздействующий на торец опорного конца ротора. Каждая радиальная магнитная опора содержит не менее двух кольцевых магнитов, имеющих одинаковые размеры и одинаковое направление осевой намагниченности. Магниты взаимодействуют в режиме притяжения через осевой зазор, Магниты статора размещены между магнитами ротора. Ротор с помощью упора смещен в осевом направлении в сторону, противоположную направлению внешней осевой нагрузки, с образованием разных осевых зазоров в магнитных опорах.

Ротор состоит из двух коаксиальных разъемных частей, первая из которых содержит выходной конец с посадочной поверхностью, закрепленный на ней кольцевой магнит и хвостовик, входящий в отверстие второй части ротора, содержащей второй кольцевой магнит и плоскую торцевую поверхность, контактирующую с упором.

Осевой упор ротора выполнен с возможностью точного перемещения вдоль оси ротора, для чего имеет цилиндрическую резьбу, размещенную в резьбовом отверстии статора, и содержит сферическую поверхность, контактирующую с плоским торцом опорного конца ротора.

Разница осевых зазоров между магнитами в радиальных опорах определяется в зависимости от величины внешней осевой нагрузки и суммарной осевой жесткости магнитных опор по формуле:

Δs=s2-s1=k*F/j

где

s1 - осевой зазор в магнитной опоре, находящейся вблизи выходного конца ротора, мм;

s2 - осевой зазор в магнитной опоре, находящейся вблизи опорного конца ротора, мм;

F - постоянно действующая внешняя осевая нагрузка, Н;

j - суммарная осевая жесткость магнитных опор, Н/мм;

k=0,8…0,9 - коэффициент.

В осевом зазоре, расположенном со стороны опорного конца ротора, размещена шайба, выполненная из немагнитного материала и имеющая толщину, рассчитываемую по формуле:

h=c*(s1+s2)/2

где

с=1,05…1,1 - коэффициент.

Наличие данной шайбы позволяет исключить осевое смещение ротора в крайнее левое устойчивое положение, при котором возникнет трение между магнитами. Такое смещение может быть вызвано случайными внешними силами, направленными против постоянно действующей внешней осевой нагрузки.

По сравнению с прототипом новое техническое решение позволяет упростить конструкцию опорного узла. Это достигается за счет уменьшения количества используемых магнитов. Установленные в опорах две пары кольцевых магнитов не только противодействуют внешней радиальной нагрузке, но и уравновешивают внешнюю осевую нагрузку. При этом, в отличие от прототипа, несущая способность радиальных опор не снижается.

Пример реализации изобретения представлен на чертеже.

Магнитный опорный узел содержит ротор, состоящий из вала 1 и гильзы 2, и статор 3, закрепленный в корпусе 4. Вал 1 имеет выходной конец, предназначенный для базирования функциональных элементов, а также -цилиндрический хвостовик, входящий в отверстие гильзы 2. Последняя имеет опорный конец, выполненный в форме плоского торца, который контактирует со сферической поверхностью осевого упора 5.

На валу 1 и гильзе 2 закреплены магниты 6 и 7, которые взаимодействуют с магнитами 8 и 9 статора в режиме притяжения.

Кольцевые магниты ротора 6 и 7 и магниты 8 и 9 статора установлены коаксиально, имеют одинаковые размеры и одинаковое направление намагниченности. Магниты 8 и 9 статора размещены между магнитами 6 и 7 ротора. Ротор с помощью упора 5 смещен в осевом направлении в сторону противоположную направлению внешней осевой нагрузки F с образованием разных осевых зазоров s1 и s2 в магнитных опорах.

Осевой упор 5 выполнен с возможностью точного перемещения вдоль оси ротора. Он имеет цилиндрическую резьбу, размещенную в резьбовом отверстии статора 3.

В осевом зазоре, расположенном со стороны опорного конца гильзы 2 ротора, размещена шайба 10, выполненная из немагнитного материала.

В таблице представлен результат расчета значений осевого зазора и толщины шайбы в магнитных опорах при заданной величине внешней осевой нагрузки на примере использования магнитной опоры для ротора компьютерного вентилятора (кулера CM12V), в котором внешняя осевая нагрузка F создается при взаимодействии лопастей крыльчатки вентилятора с потоком воздуха.

Примечание: D*d*h - размеры магнита (диаметр наружный * диаметр внутренний * высота)

Настоящее изобретение с помощью простого конструктивного решения позволяет обеспечить осевую стабилизацию положения ротора с компенсацией внешней осевой нагрузки, действующей на осевой упор. В результате сила трения в зоне контакта упора и ротора существенно уменьшается. Это ведет к повышению долговечности магнитных опор. При использовании новых магнитных опор в различных машинах снижаются энергетические затраты и повышается КПД.

БИБЛИОГРАФИЯ

1. Патент RU 2272676. М. кл. F04B 9/12, F16C 32/04. Опубликовано 27.03.2006 г. Бюл. №9.

2. Авторское свидетельство СССР №847443. М. кл. H02K 5/16, F16C 32/04. Опубликовано 15.07.1981 г. Бюл. №26.

1. Магнитный опорный узел, содержащий ротор с опорным и выходным концами, статор, две радиальные магнитные опоры ротора с кольцевыми коаксиальными магнитами, установленными на роторе и статоре, и осевой упор, воздействующий на торец опорного конца ротора, отличающийся тем, что каждая радиальная магнитная опора содержит не менее двух кольцевых магнитов, имеющих одинаковые размеры и одинаковое направление осевой намагниченности и взаимодействующих в режиме притяжения через осевой зазор, причем магниты статора размещены между магнитами ротора, а ротор с помощью упора смещен в осевом направлении в сторону, противоположную направлению внешней осевой нагрузки, с образованием разных осевых зазоров в магнитных опорах.

2. Магнитный опорный узел по п. 1, отличающийся тем, что ротор состоит из двух коаксиальных разъемных частей, первая из которых содержит выходной конец с посадочной поверхностью, закрепленный на ней кольцевой магнит и цилиндрический хвостовик, входящий в отверстие второй части ротора, содержащей второй кольцевой магнит и плоскую торцевую поверхность, контактирующую с упором.

3. Магнитный опорный узел по п. 1, отличающийся тем, что осевой упор выполнен с возможностью точного перемещения вдоль оси ротора, для чего имеет цилиндрическую резьбу, размещенную в резьбовом отверстии статора, и содержит сферическую поверхность, контактирующую с плоским торцом опорного конца ротора.

4. Магнитный опорный узел по п. 1, отличающийся тем, что разница осевых зазоров между магнитами в радиальных опорах определяется в зависимости от величины внешней осевой нагрузки и суммарной осевой жесткости магнитных опор по формуле:

Δs=s2-s1=k*F/j,

где

s1 - осевой зазор в магнитной опоре, находящейся вблизи выходного конца ротора, мм;

s2 - осевой зазор в магнитной опоре, находящейся вблизи опорного конца ротора, мм;

F - внешняя осевая нагрузка, Н;

j - суммарная осевая жесткость магнитных опор, Н/мм;

k=0,8…0,9 - коэффициент.

5. Магнитный опорный узел по п. 1, отличающийся тем, что в осевом зазоре, расположенном со стороны опорного конца ротора, размещена шайба, выполненная из немагнитного материала и имеющая толщину, рассчитываемую по формуле:

h=c*(s1+s2)/2,

где

c=1,05…1,1 - коэффициент.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Управляемый газомагнитный подшипниковый узел содержит корпус, в котором установлен вкладыш подшипника скольжения, вал, размещенный во вкладыше, электромагнитный подшипник, содержащий более одного электромагнита, полюса и ярма электромагнитов, установленные в корпусе, обмотки электромагнитов, расположенные на ярмах, датчики измерения зазора.

Изобретение касается устройства для магнитной установки вала. Устройство для установки вала (3) содержит окружающее вал (3) магнитное ярмо (1) с U-образным профилем, причем плечи U-образного профиля расположены радиально, а отверстие U-образного профиля указывает на вал (3), по меньшей мере одно первое средство (2, 9, 10) для создания магнитной цепи (4), причем магнитная цепь (4) выполнена с возможностью формирования от магнитного ярма (1) к валу (3).

Изобретение относится к подшипникам, в особенности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел (10) для ротационной машины имеет роторный вал (12), причем указанный узел содержит магнитопровод (18) статора, прикрепленный к неподвижному опорному элементу (26) и содержащий по меньшей мере один элемент (22) из ферромагнитного материала и по меньшей мере одну катушку (20), причем указанный ферромагнитный элемент и указанная по меньшей мере одна катушка помещены в защитный кольцевой корпус (24), оставляя открытыми поверхность (22а) вращения указанного ферромагнитного элемента (22) и поверхность (20а) вращения указанной по меньшей мере одной катушки (20).

Изобретение относится к подшипникам, в частности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел для ротационной машины имеет обмотку (17) ротора и магнитную обмотку (18, 44) статора, закрепленную на неподвижном опорном элементе (26, 2), имеющем по меньшей мере один элемент, выполненный из ферромагнитного материала (22, 48), и по меньшей мере одну катушку (20, 46), при этом оба эти элемента установлены в защитном кольцевом корпусе (24, 50), оставляя открытой поверхность вращения (22а, 48а) указанного ферромагнитного элемента (22, 48).

Изобретение относится к магнитным опорам цилиндрического типа на основе сверхпроводников. Магнитная опора цилиндрического типа на высокотемпературных сверхпроводниках содержит цилиндрический корпус, внутри которого расположен магнитный ротор и статор с высокотемпературными сверхпроводниками.

Изобретение относится к энергетическому машиностроению, а именно к компрессорным машинам, насосам, двигателям и т.д., имеющим опорные подшипники для вращающегося вала с нагрузочной массой.

Изобретение относится к устройствам бесконтактного электромагнитного подвеса вертикального вала ротора, более конкретно - к электромагнитным подшипникам, предназначенным для использования в различных электрических машинах с вертикальным расположением вала ротора, таких как электромеханические накопители энергии, ветрогенераторы и т.п.

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного дисбаланса за счет формирования в каждом радиальном ЭМП гибкого ротора двух дополнительных ортогональных управляющих сил, повышающих эффективность корректировки положения оси гибкого ротора в переходных режимах и определяемых с помощью предлагаемых системы и порядка управления работой гибкого ротора.

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе магнитное устройство, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству.

Изобретение относится к магнитным подшипникам для вращающихся машин, в соответствии с чем подшипник представляет собой интегрированную радиально-осевую конструкцию, при этом осевой магнитный поток управления проходит через центральное отверстие магнитомягкого сердечника.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Управляемый газомагнитный подшипниковый узел содержит корпус, в котором установлен вкладыш подшипника скольжения, вал, размещенный во вкладыше, электромагнитный подшипник, содержащий более одного электромагнита, полюса и ярма электромагнитов, установленные в корпусе, обмотки электромагнитов, расположенные на ярмах, датчики измерения зазора.

Изобретение касается устройства для магнитной установки вала. Устройство для установки вала (3) содержит окружающее вал (3) магнитное ярмо (1) с U-образным профилем, причем плечи U-образного профиля расположены радиально, а отверстие U-образного профиля указывает на вал (3), по меньшей мере одно первое средство (2, 9, 10) для создания магнитной цепи (4), причем магнитная цепь (4) выполнена с возможностью формирования от магнитного ярма (1) к валу (3).

Изобретение относится к подшипникам, в особенности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел (10) для ротационной машины имеет роторный вал (12), причем указанный узел содержит магнитопровод (18) статора, прикрепленный к неподвижному опорному элементу (26) и содержащий по меньшей мере один элемент (22) из ферромагнитного материала и по меньшей мере одну катушку (20), причем указанный ферромагнитный элемент и указанная по меньшей мере одна катушка помещены в защитный кольцевой корпус (24), оставляя открытыми поверхность (22а) вращения указанного ферромагнитного элемента (22) и поверхность (20а) вращения указанной по меньшей мере одной катушки (20).

Изобретение относится к подшипникам, в частности к магнитным подшипникам, используемым в ротационных машинах, имеющих ротор. Магнитный подшипниковый узел для ротационной машины имеет обмотку (17) ротора и магнитную обмотку (18, 44) статора, закрепленную на неподвижном опорном элементе (26, 2), имеющем по меньшей мере один элемент, выполненный из ферромагнитного материала (22, 48), и по меньшей мере одну катушку (20, 46), при этом оба эти элемента установлены в защитном кольцевом корпусе (24, 50), оставляя открытой поверхность вращения (22а, 48а) указанного ферромагнитного элемента (22, 48).

Группа изобретений относится к вращающимся машинам. Вращающаяся машина содержит вал (14), корпус, по меньшей мере один основной магнитный подшипник, присоединенный к валу (14) для поддержки с возможностью вращения вала внутри корпуса, по меньшей мере один первый и один второй вспомогательные подшипники (20, 22), расположенные между валом и корпусом для поддержки осевых и радиальных нагрузок, и первое и второе осевые упорные средства (44, 54), расположенные на валу ля передачи осевых нагрузок к внутренним кольцам подшипников качения.

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д.

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д.

Изобретение относится к магнитным опорам цилиндрического типа на основе сверхпроводников. Магнитная опора цилиндрического типа на высокотемпературных сверхпроводниках содержит цилиндрический корпус, внутри которого расположен магнитный ротор и статор с высокотемпературными сверхпроводниками.

Изобретение относится к области энергомашиностроения и может быть использовано в электромеханических преобразователях энергии на бесконтактных подшипниках. Технический результат - повышение точности управления и надежности электрической машины с ротором на бесконтактных подшипниках, возможность применения во всех типах бесконтактных подшипников и измерения перекосов ротора в осевом направлении.

Изобретение относится к магнитному подшипнику (1), предназначенному для ротационной установки, содержащей ротор (4). Магнитный подшипник (1), предназначенный для ротационной установки, имеющей ротор (4), и содержащий статорный магнитопровод (5), прикрепленный к неподвижному опорному компоненту (9) и содержащий по меньшей мере одну обмотку (6) и ферромагнитное тело (7), размещенные в защитной кольцеобразной опоре (8), которая прикреплена к неподвижному опорному компоненту (9) и оставляет незакрытой поверхность ферромагнитного тела (7) и поверхность указанной по меньшей мере одной обмотки (6), при этом указанная защитная кольцеобразная опора (8) имеет U-образное сечение с радиальной перемычкой (10) и внутренним и наружным осевыми выступами (11, 12).

Изобретение относится к бесконтактным подшипникам вращения и может быть использовано преимущественно для валов и роторов высокоскоростных машин, таких как турбокомпрессоры, высокооборотные электродвигатели, генераторы, инерционные накопители энергии, пылесосы. Гибридный магнитный подшипник вращения содержит подвижную и неподвижную части с разделенными магнитным зазором плоскими кольцевыми площадками магнитного взаимодействия. Подвижная часть подшипника выполнена в форме диска (1) с кольцевыми выступами (11), а неподвижная часть включает электромагнит с катушкой (2) и магнитопроводом. Магнитопровод содержит наружный участок в форме трубы (3) и средний участок в форме диска (4), к которому своим кольцевым плоским полюсом присоединен постоянный магнит (5) в форме трубы. Постоянный магнит (5) расположен соосно с наружным цилиндрическим участком (3) магнитопровода и имеет осевое направление намагничивания. Катушка (2) электромагнита выполнена в форме тела вращения и размещена целиком во внутренней цилиндрической полости, находящейся между цилиндрической частью (3) магнитопровода и постоянным магнитом (5), коаксиально с ним. Технический результат: упрощение конструкции, снижение габаритов, увеличение несущей способности и жесткости. 1 з.п. ф-лы, 4 ил., 1 табл.
Наверх