Способ получения 2,3-диалкил-n-фенил-1,2,3,4-тетрагидрохинолин-4-аминов

Изобретение относится к органической химии, а именно к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный, валерьяновый), характеризующееся тем, что в качестве катализатора используют аморфный мезопористый алюмосиликат ASM и реакцию проводят в проточном реакторе с неподвижным слоем катализатора при 250-350°С, объемной скорости подачи сырья 2-10 ч-1, атмосферном давлении, в токе азота, при мольном соотношении анилин: альдегид = 1:2. Технический результат: упрощение синтеза производных тетрагидрохинолина и снижение энерго- и материалоемкости процесса гетероциклизации. 1 з.п. ф-лы, 1 табл., 3 пр.

 

Предлагаемое изобретение относится к области органической химии, в частности, к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов общей формулы 1:

Производные тетрагидрохинолинов (ТГХ) относятся к классу N-гетероциклических соединений, обладающих широким спектром биологической активности. Они нашли применение в качестве антибиотиков [Omura, S.; Nakagawa, A. Tetruhedron Lett. 1981,22,2199-2202. Francis, С.L.; Ward, A. D. Aust. J. Chem 1994,47, 2109-2117. Williamson, N. M.; March, D. R.; Ward, A. D. Tetrahedron Lrtt. 1995, 36, 7721-7724.], антидепрессантов [Buzas, A.; Ollivier, R.; El Ahmad, Y.; Laurent, E. // PCT Int. Appl. WO 93 16,057, 1993; Chem. Abstr. 1994,120, 134523c], антигистаминных [Biller, S. A.; Misra, R. N. // U.S. Pat. US 4,843,082, 1989; Chem Abstr. 1989, 111, 232600j.], сердечно-сосудистых [Atwal, K. // Eur. Pat. EP 488, 616, 1992; Chem. Abstr. 1992, 117, 89978e], противоопухолевых [Lukevics, E.; Lapina, Т.; Segals, I.; Augustane, I.; Verovskii, V. N. // Khim.-Farm. Zh. 1988, 22, 947- 951; Chem. Abstr. 1988, 109, 222016t.], противоязвенных [Uchida, M.; Chihiro, M.; Morita, S.; Yamashita, H.; Yamasaki, K.; Kanbe, Т.; Yabuuchi. Y.; Nakagawa, K. // Chem. Pharrm. Bull. 1990, 38, 1575-1586. Uchida, M.; Morita, S.; Chihiro, M. // Eur. Pat. EP 239, 129, 1987; Chem. Abstr. 1988, 108, 186740t] и других агентов. Помимо фармацевтической области применения, производные тетрагидрохинолина используются, как пестициды [Walter, Н. // Eur. Pat. 555, 183, 1993; Chem. Abstr. 1994, 120, 54551v. Ohsumi, Т.; Mito, N.; Oshio, H.; Itaya, N. // Nippon Noyaku Gokkuishi 1988, 13, 71-75; Chem. Abstr. 1988, 109, 88070a. Shmyreva, Zh. V.; Shikhaliev, Kh. S.; Shpanig, E. B. // Izv. Vyssh. Uchebn. Zaved, Khim. Khim. Tekhnol. 1988, 31, 45-48; Chem. Abstr. 1989, 111, 23363v. Tsushima, K.; Osumi, Т.; Matsuo, N.; Itaya, N. // Agric. Biol. Chem. 1989, 53, 2529-2530. Kurahashi, Y.; Shiokawa, K.; Goto, Т.; Kagabu, S.; Kamochi, A.; Moriya, K.; Hayakawa, H. // Eur. Pat. EP 198, 264, 1986; Chem. Abstr. 1987, 106, 98115w], антиоксиданты [Luzhkov, V. В.; Fentsov, D. V.; Kasaikina, О. T. Zh. Strukt. Khim. 1988, 29, 37-41. Chem. Abstr. 1989, 111, 22774t. Meier, H. R.; Evans, S. // Eur. Pat EP 273, 868, 1988; Chem Abstr. 1989, 110, 98598р. Fentsov, D. V.; Lobanova, Т. V.; Kassaikina, О. T. // Neftekhimiya 1990, 30, 103-108; Chem. Abstr. 1990, 112, 234619s. Evans, S. // Eur. Pat. EP 497, 735, 1992; Chem. Abstr. 1992, 117, 233868p], ингибиторы коррозии [Shikhaliev, Kh. S.; Shmyreva, Zh. V.; Gurova, E. M. // Izv. Vyssh. Uchebn. Zaved, Khim. Khim. Tekhnol. 1989, 32, 85-89; Chem. Abstr. 1990, 112, 216659a].

Одним из основных методов синтеза производных ТГХ является трехкомпонентная циклоконденсация (реакция Поварова) ариламина, альдегида и алкена, катализируемая солями переходных металлов [Kobayashi, S.; Ishitani, Н.; Nagayama, S. Chem. Lett. 1995, 423. Annunziata, R.; Cinquini, M.; Cozzi, F.; Molteni, V.; Schupp, O. Tetrahedron, 1997, 53, 9715.] (схема 1).

Существенным недостатком классических методов синтеза производных ТГХ в присутствии гомогенных кислотных катализаторов является необходимость проведения стадий нейтрализации и отмывки реакционной смеси, утилизация сточных вод, коррозия оборудования.

Авторами [Ishitani, Н.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357] сообщается о получении производных ТГХ реакцией аза-Дильса-Альдера арилимина и алкена, катализируемую (10-20% мольных) хиральными комплексами иттербия (энантиомерный выход 70-91%) (схема 2) или в присутствии фосфорной кислоты, нанесенной на хиральную подложку (энантиомерный выход 87-98%) [Dagousset, G.; Zhu, J. P.; Masson,G. J Am Chem Soc 2011, 133, 14804. He, L.; Bekkaye, M.; Retailleau, P.; Masson, G. Org Lett 2012, 14,3158].

Недостатком данного метода является использование дорогостоящих труднодоступных хиральных комплексов. Кроме того, указанные выше методы приводят к получению 2,4-замещенных ТГХ.

Авторами [Т. Shao, Y. Yin, R. Lee, X. Zhao, G. Chai and Z. Jiang, Adv. Synth. Catal., 2018,360, 1754. Z. Jiang, T. Shao, X. Zhao, Y. Liu, B. Qiao. Patent CN 108017580. Method for synthesis of 1,2,3,4-tetrahydroquinoline, 2018] разработан и запатентован метод синтеза 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов (1) путем фотоиндуцируемого каскадного аэробного декарбоксилирования и окислительного дегидрирования N-ариламинокислоты (схема 3). Реакцию проводят при облучении 2 × 1 W синего света, в присутствии молекулярных сит при 25°С в растворе хлороформа в течение 5-15 ч. В качестве хромофора используют дицианопиразиновое производное (0.4% мольных). Выход ТГХ (1) составляет 78%.

К недостаткам данного метода можно отнести использование специального оборудования для УФ-облучения, сложных в изготовлении и дорогостоящих N-ариламинокислот и хромофора, а также длительное время реакции.

В работе [Т. Job and N. Hagihara, J. Chem. Soc. Japan, 91, 378, 383 (1970); Chem.Abstr.,73,45,294,45,295(1971)] описано получение производных ТГХ (1) с выходом 78% взаимодействием основания Шиффа и метилвинилового эфира, катализируемого Ni(CO)4 (схема 4). Реакция проводится в инертной атмосфере в растворе ТГФ при 40-50°С в течение 6 ч.

Недостатком данного способа является использование низкокипящих, гидролитически нестабильных виниловых эфиров, а также проведение синтеза во взрывоопасных эфирных растворителях.

Разработан метод синтеза ТГХ (1) из N-аллиланилина в присутствии Rh(I) катализаторов (схема 5) [М. Aresta, Е. Quaranta, S Treglia, J.A. Ibers. Organometallics, 1988, V7, №3, 577-583].

Реакцию проводили при мольном соотношении амин : катализатор = 500:1 в растворе толуола/ тетрагидрофурана в инертной атмосфере в течение 2-72 ч. Выход ТГХ (1) не превышал 19%.

К недостаткам данного метода можно отнести низкий выход ТГХ (1) и использование сложных в изготовлении и дорогостоящих катализаторов, содержащих металлокомплексное соединение. Подобные каталитические системы требуют создания специальных условий использования, поскольку термически и гидролитически нестабильны.

Известен метод синтеза ТГХ (1) взаимодействием анилина с пропионовым альдегидом в «мягких условиях» [A.I.M. Ramos, J.S. Mecom, T.J. Kiesow, T.L. Graybill, G.D. Brown, N.V. Aiyar, E.A.Davenport, L.A. Kallal, B.A.K. Reed, P. Li, A.T. Londregan, D.M. Morrow, S. Senadhi, R.K. Thalji, S. Zhao, C.L.B. Kurtis, J.P. Marino. Bioorg. Med. Chem. Lett., 18 (2008), pp.6222-6226] (схема 6).

Реакция протекает без участия катализатора в этиловом спирте при 0°С с последующим увеличением температуры до комнатной в течение 14 ч, мольное соотношение анилин : альдегид = 1:1. Выход целевого продукта (1) составил 35%.

Авторами [VI Minkin, LE Nivorozhkin, AV Knyazev, Chem. Heterocycl. Comp, Vol. 2, No. 3, pp. 409-418, 1966] предложен аналогичный метод синтеза ТГХ (1), заключающийся в кислотно-катализируемой (ледяная уксусная кислота) конденсации ариламинов и пропионового альдегида, взятых в эквимольных количествах. Выход продукта (1) составляет 42%. Реакция протекает в метанольном растворе при комнатной температуре в течение 2-4 дней.

Недостатками данных методов является длительное время реакции, низкий выход ТГХ, а использование уксусной кислоты приводит к появлению дополнительных стадий нейтрализации и очистки реакционной массы, а также большого количества сточных вод.

В литературе отсутствует информация о получении производных ТГХ (1) взаимодействием анилина с альдегидами на цеолитных катализаторах.

Задачей настоящего изобретения является разработка селективного гетерогенно-каталитического способа синтеза 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов.

Решение этой задачи достигается тем, что синтез 2,3-диалкилтетрагидрохинолинов (1) осуществляют реакцией анилина с алифатическими альдегидами (пропионовый, масляный, валерьяновый) в присутствии аморфного мезопористого алюмосиликата ASM.

Реакцию проводят в проточном реакторе с неподвижным слоем катализатора (ASM, 1 г) при 250-350°С, атмосферном давлении, объемной скорости подачи сырья (w) 2-10 ч-1, при мольном соотношении анилин : альдегид = 1:2. Конверсия анилина составляет 78-95%. Основным продуктом реакции являются 2,3-диалкилТГХ (1 а-в), образующиеся с селективностью 45-71% (схема 7). Кроме 2,3-диалкилТГХ (1 а-в), в реакционной массе содержатся другие N-содержащие производные (например, 2,3-диалкилхинолины, 2,3-диалкил-дигидрохинолины) в количестве 29-55%.

Мезопористый алюмосиликат ASM (Si/Al=40) получен двухстадийным золь-гель синтезом при переменном рН. Применение мезопористого алюмосиликата ASM в реакциях синтеза производных тетрагидрохинолина из анилина и альдегидов неизвестно.

Использование предлагаемого способа имеет следующие преимущества перед известными:

1. Гетерогенно-каталитические способы синтеза производных тетрагидрохинолина позволяют упростить и удешевить процесс их получения за счет уменьшения количества стадий и единиц оборудования.

2. Не требуется использование дорогостоящих и сложных в приготовлении катализаторов.

3. В способе отсутствуют сточные воды, кислоты и основания.

4. Не используются растворители.

Предлагаемый способ синтеза 2,3-диалкилпроизводных ТГХ (1 а-в) осуществляют следующим образом.

Используют анилин и карбонильные соединения: пропионовый альдегид, масляный, валерьяновый альдегид.

В качестве катализатора используют аморфный мезопористый алюмосиликат ASM, синтезированный по методу, приведенному в [Аглиуллин М.Р., Григорьева Н.Г., Данилова И.Г., Магаев О.В., Водянкина О.В. // Кинетика и катализ. 2015. Т. 56. №4. С. 507. Agliullin M.R., Danilova I.G., Faizullin A.V., Amarantov S.V., Bubennov S.V., Prosochkina T.R., Grigor'eva N.G., Paukshtis E.A., Kutepov B.I. // Micropor. Mesopor. Mat. 2016. V. 230. P. 118]. Образец ASM характеризуется узким распределением мезопор от 2 до 5 нм с объемом 0.70 см3/г.

Реакцию взаимодействия анилина и альдегидов (пропионовый, масляный, валерьяновый) проводят в проточном реакторе с неподвижным слоем катализатора ASM при температуре 250-350°С, атмосферном давлении, с объемной скоростью подачи сырья (w) 2-10 ч-1, в токе азота, мольное соотношение анилин : альдегид = 1:2. Продукты собирают в охлаждаемый льдом приемник. Количественный анализ реакционной массы осуществляют методом газожидкостной хроматографии на хроматографе Shimadzu GC-9A с пламенно-ионизационным детектором, 3 м насадочная колонка, фаза SE-30, с программированным нагревом 50-250°С, газ-носитель гелий.

Идентификацию продуктов реакции осуществляли с помощью 1D и 2D методик ЯМР 1Н и 13С спектроскопии, рентгеноструктурного анализа для соединения (1а), их брутто-состав подтвержден регистрацией пика молекулярного иона в ГХ-МС спектре.

Изобретение иллюстрируется следующим примером:

Пример 1. Смесь, содержащую 2,5 мл (28 ммоль) анилина и 4 мл (56 ммоль) пропионового альдегида, подают с помощью шприцевого микронасоса в проточный реактор с неподвижным слоем катализатора ASM (Si/Al=40, 1 г) при 250°С, атмосферном давлении, объемной скорости подачи сырья 7 ч-1, в токе азота. Продукты собирают в охлаждаемый льдом приемник, расположенный в нижней части установки. По окончании синтеза реактор продувают азотом в течение 30 минут, после чего продукты реакции анализируют методом газожидкостной хроматографии. Конверсия анилина составляет 93%, селективность образования 2,3-диалкилТГХ (1а) составляет 62%, т.пл. 104-106°С (лит. 103-104°С [Kozlov, N. S.; Zhurnal Obshchei Khimii 1966, V2(3), P. 461-463], 106-107°C [Joh, Takashi; Nippon Kagaku Zasshi 1970, V91(4), P. 378-383]).

Спектральные характеристики 2-этил-3-метил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (1a): ЯМР 1H (500.17 М Гц, CDCl3, δ, м.д.): 1.01 (т, J=9.5 Гц, 3Н), 1.11 (д, J=8.5 Гц, 3Н), 1.61-1.67 (м, 2Н), 1.88-1.94 (м, 1Н), 3.14-3.18 (м, 1Н), 3.85 (м, 2Н), 4.34 (д, J=11.5 Гц, 1H), 6.55 (д, J=10.0 Гц, 1Н), 6.62-6.77 (м, 4Н), 7.06 (т, J=8.8 Гц, 1Н), 7.19-7.27 (м, 3Н). ЯМР 13С (125.78 МГц, CDCl3, δ, м.д.): 9.12, 15.76, 26.49, 37.39, 56.44, 57.86, 112.50, 113.25, 113.86, 116.85, 117.36, 123.38, 128.05, 128.31, 129.40, 129.45, 144.37, 148.76. Полученные данные соответствуют литературным [Aresta, М., Quaranta, Е., Treglia, S., & Ibers, J. А. (1988). Organometallics, 7(3), 577-583. doi:10.1021/om00093a001. A.I.M. Ramos, J.S. Mecom, T.J. Kiesow, T.L. Graybill, G.D. Brown, N.V. Aiyar, E.A.Davenport, L.A. Kallal, B.A.K. Reed, P. Li, A.T. Londregan, D.M. Morrow, S. Senadhi, R.K. Thalji, S. Zhao, C.L.B. Kurtis, J.P. Marino. Bioorg. Med. Chem. Lett., 18 (2008), pp. 6222-6226].

Пример 2. Сырье - смесь 2,5 мл (28 ммоль) анилина и 5,2 мл (56 ммоль) масляного альдегида - подают с помощью шприцевого микро-насоса в проточный реактор с неподвижным слоем катализатора ASM (Si/Al=40, 1 г) при 250°С, атмосферном давлении, объемной скорости подачи сырья 7 ч-1, в токе азота. Продукты собирают в охлаждаемый льдом приемник, расположенный в нижней части установки. По окончании синтеза реактор продувают азотом в течение 30 минут, после чего продукты реакции анализируют методом газожидкостной хроматографии. Конверсия анилина составляет 85%, селективность образования 2,3-диалкилТГХ (1б) составляет 71%, т.пл. 90-92°С (лит. 91-92°С [Kozlov, N. S.; Zhurnal Obshchei Khimii 1966, V2(3), P461-463]).

Спектральные характеристики 2-пропил-3-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (1б): ЯМР 1Н (500.17 М Гц, CDCl3, δ, м.д.): 1.01 (т, J=7.5 Гц, 3Н), 1.07 (т, J=7.5 Гц, 3Н), 1.49-1.63 (м, 4Н), 1.92-2.00 (м, 3Н), 3.32-3.34 (м, 1Н), 3.96 (м, 2Н), 4.47 (д, J=9.5 Hz, 1Н), 6.59 (д, J=7.8 Гц, 1Н), 6.71-6.79 (м, 4Н), 7.12 (т, J=7.8 Гц, 1Н), 7.28-7.37 (м, 3Н). Спектр ЯМР 13С (125.78 МГц, CDCl3, δ, м.д.): 11.04, 14.14, 19.58, 23.58, 37.05, 41.67, 51.80, 53.24, 112.46, 113.34, 114.35, 116.87, 117.33, 122.30, 128.31, 129.44, 129.50, 129.92, 143.59, 148.05.

Пример 3. Сырье - смесь 2,5 мл (28 ммоль) анилина и 5,9 мл (56 ммоль) валерьянового альдегида - подают с помощью шприцевого микронасоса в проточный реактор с неподвижным слоем катализатора ASM (Si/Al=40, 1 г) при 250°С, атмосферном давлении, объемной скорости подачи сырья 7 ч-1, в токе азота. Продукты собирают в охлаждаемый льдом приемник, расположенный в нижней части установки. По окончании синтеза реактор продувают азотом в течение 30 минут, после чего продукты реакции анализируют методом газожидкостной хроматографии. Конверсия анилина составляет 93%, селективность образования 2,3-диалкилТГХ (1в) составляет 45%, т.пл. 71-73°С.

Спектральные характеристики 2-бутил-3-пропил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (1в): ЯМР 1Н (500.17 М Гц, CDCl3, δ, м.д.): 0.91-0.97 (м, 6Н), 1.27-1.48 (м, 10Н), 1.65-1.67 (м, 1Н), 3.24-3.27 (м, 1Н), 3.86 (м, 2Н), 4.39 (д, J=10.0 Hz, 1Н), 6.53-6.77 (м, 5Н), 7.07-7.26 (м, 4Н). Спектр ЯМР 13С (125.78 МГц, CDCl3, δ, м.д.): 14.02, 14.10, 22.63, 22.67, 29.32, 29.41, 35.09, 40.07, 52.62, 53.86, 112.47, 113.34, 114.35, 116.83, 117.23, 121.94, 127.94, 128.32, 129.39, 129.42, 143.44, 147.88.

Другие примеры (2, 3, 5) осуществления способа приведены в таблице.

h - объемная скорость подачи сырья.

Реакцию проводят при 250-350°С, мольном соотношении анилин : альдегид = 1:2; объемной скорости подачи сырья h=2-10 ч-1.

1. Способ получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов взаимодействием анилина с альдегидами в присутствии катализатора, отличающийся тем, что в качестве катализатора используют аморфный мезопористый алюмосиликат ASM, реакцию анилина с алифатическим альдегидом (пропионовый, масляный или валерьяновый) проводят в проточном реакторе с неподвижным слоем катализатора при 250-350°С, объемной скорости подачи сырья 2-10 ч-1, атмосферном давлении, в токе азота и мольном соотношении анилин: альдегид = 1:2.

2. Способ по п. 1, в котором аморфный мезопористый алюмосиликат ASM имеет мольное соотношение каркасных атомов Si/Al=40.



 

Похожие патенты:

Изобретение относится к области радиофармпрепаратов для получения in vivo изображений, в частности автоматическим способам получения и очистки 18F-меченых радиофармпрепаратов для получения изображений тау-белка.

Изобретение относится к конкретным соединениям, перечисленным в п.1 формулы изобретения, которые могут найти применение при лечении или профилактике бактериальной колонизации или инфекции у субъекта.

Изобретение относится к новым соединениям формулы I, их оптическим изомерам или фармацевтически приемлемым солям, которые могут найти применение при лечении заболеваний, опосредуемых гистондеацетилазой.

Изобретение относится к новым производным тетрагидрохинолина формулы (I) или к его фармацевтически приемлемой соли, где R1: водород, низший алкил, галоген или карбокси; R2: водород, низший алкил, гало-низший алкил, галоген, циано или карбокси; R3 и R4: низший алкил; R5 и R6 выбраны из водорода, карбокси-низший алкиламино, карбоксициклопропиламино, низший алкилсульфониламино, фенилсульфониламино, галофенилсульфониламино, низший алкилфенилсульфониламино, галофенилкарбониламино, пиридинилсульфониламино, низший алкиламиносульфонила и галофениламиносульфонила; при условии, что оба R5 и R6 не представляют собой водород одновременно; R7: водород или низший алкил.

Изобретение относится к области органической химии, а именно к новым производным тетрагидрохинолина общей формулы (I) или к их фармацевтически приемлемым солям или сложным эфирам, где R1 представляет собой водород, галоген, карбоксил, алкоксикарбонил, алкилсульфониламинокарбонил или циклоалкилсульфониламинокарбонил; R2 представляет собой водород, галоген или карбоксил; R3 представляет собой водород, галоген, карбоксил, галогеноалкил, циано, алкоксикарбонил, алкилсульфонил, алкилсульфониламинокарбонил, циклоалкилсульфониламинокарбонил, карбоксилалкиламино(алкил)карбонил, алкил(гидрокси)пирролидинилкарбонил или карбоксилпирролидинилкарбонил; R4 представляет собой водород, карбоксил, алкилсульфониламинокарбонил или циклоалкилсульфониламинокарбонил; R5 представляет собой пиридинил, замещенный пиридинил, морфолинилпиридинил, фенил или замещенный фенил, где замещенный пиридинил и замещенный фенил представляют собой пиридинил и фенил, замещенные одним или двумя заместителями, указанными в формуле изобретения; где алкил, один или в комбинации, означает насыщенную алкильную группу с линейной или разветвленной цепью, содержащую от 1 до 6 атомов углерода; алкокси, один или в комбинации, означает группу алкил-O-, где алкил такой, как определено выше; циклоалкил, один или в комбинации, относится к насыщенному углеродному кольцу, содержащему от 3 до 6 атомов углерода; при условии, что 3,3-диметил-2-фенил-1,2,3,4-тетрагидрохинолин исключен.

Изобретение относится к производным 1-гидроксиимино-3-фенил-пропана формулы I, где R1 представляет собой -(CH2)m-фенил, m равно 0 и фенил замещен 1-3 группами, независимо выбранными из C1-7-алкила или гидрокси, или -(СН2)n-гетероарил, где n равно 0 или 1, и гетероарил выбран из пиридина, 1Н-пиридин-2-она, 1-окси-пиридина, 1Н-пиримидин-2-она, хинолина и пиразина и является незамещенным или замещенным 1-3 группами, указанными в формуле изобретения; R2 представляет собой водород или C1-7-алкил, или в случае, когда R4 представляет собой водород, R2 представляет собой фенил, необязательно замещенный C1-7-алкилом; R3 представляет собой водород; R5 представляет собой водород или гидрокси; или R3 и R5 заменены двойной связью; R4 выбран из группы, состоящей из C1-7-алкила, C3-7-циклоалкила, C2-7-алкенила, галоген-C1-7-алкила, необязательно замещенного фенила, необязательно замещенного фенил-C1-7-алкила, 5-9-членного гетероарила, содержащего 1-2 гетероатома, выбранных из N и S, необязательно замещенного C1-7-алкилом или оксо, и пиперидинила, необязательно замещенного C1-7-алкилом, или R4 и R5 вместе с атомом углерода, к которому они присоединены, образуют C3-7-циклоалкильное кольцо; R6 представляет собой водород или галоген; или R4 и R6 вместе с атомом углерода, к которому они присоединены, образуют циклическую группу G, где m представляет собой 0 или 2; R7 - R9 являются такими, как указано в формуле изобретения; R10 выбран из водорода, галогена и C1-7-алкила; или их фармацевтически приемлемым солям.

Настоящее изобретение относится к области органической химии, а именно к соединениям формулы (I) или к фармацевтически приемлемой соли такого соединения, где - Х представляет собой атом углерода, и R1a и R2a вместе образуют связь; или - Х представляет собой атом углерода, R1a и R2a вместе образуют связь, и R1 и R2 вместе образуют фрагмент , где звездочкой показана точка присоединения R2; или - Х представляет собой атом углерода, R1a представляет собой водород или (С1-4)алкокси, и R2a представляет собой водород; и R1 и R2, если не указано иное, независимо представляют собой водород; (С1-5)алкил; арил, где арил означает нафтил или фенил, где указанный арил является незамещенным или независимо моно- или дизамещенным, где заместители независимо выбраны из группы, состоящей из (С1-4)алкила, (C1-4)алкокси и галогена; или гетероарил, выбранный из пиридила, тиенила, оксазолила и тиазолила, где указанный гетероарил является незамещенным; при условии, что когда R2 представляет собой арил или гетероарил, то R1 не может представлять собой арил или гетероарил, где арил и гетероарил независимо являются незамещенными или замещены как определено выше; R3 представляет собой водород или -CO-R31; R31 представляет собой (С1-5)алкил, (С1-3)фторалкил или (С3-6)циклоалкил; n равно целому числу 1, 2, 3 или 4; В представляет собой группу -(СН2)m, где m равно целому числу от 1 до 3; А представляет собой -(CH2)р-, где р равно целому числу 2 или 3; R4 представляет собой (С1-5)алкил; W представляет собой , где R5 представляет собой водород или (C1-5)алкил; R8, R9 и R10 независимо представляют собой водород, галоген, (C1-5)алкил, гидрокси, (С1-5)алкокси, -O-СО-(С1-5)алкил, (С1-3)фторалкил, (C1-3)фторалкокси, -СО-(С1-5)алкокси, (С1-2)алкокси-(С1-4)алкокси или -NH-CO-(С1-5)алкил.

Изобретение относится к области органической химии, в частности к способу получения гидроксипроизводных стирилхинолинов, используемых в синтезе ингибиторов липоксигеназы или фосфолипазы и/или антагонистов лейкотриена, обладающих противоаллергическими ипротивовоспалительными свойствами.

Изобретение относится к способу получения хинолинов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный), характеризующемуся тем, что в качестве катализатора используют гранулированный иерархический цеолит Ymmm в Н-форме в количестве 10-20% мас.

Изобретение относится к способу получения хинолинов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный, валерьяновый), характеризующемуся тем, что в качестве катализатора используют гранулированный иерархический цеолит Ymmm в Н-форме в количестве 10-30% мас.

Изобретение относится к способу получения 2,3-диалкилхинолинов взаимодействием анилина с альдегидами в присутствии катализатора на основе цеолита, при этом в качестве катализатора используют цеолит Y в Н-форме, реакцию анилина с алифатическими альдегидами (пропионовый или масляный) проводят в присутствии 10-20% маc.

Изобретение раскрывает способ каталитического получения 2,3-диалкилхинолинов взаимодействием анилина с альдегидами, характеризующийся тем, что в качестве катализатора используют аморфный мезопористый алюмосиликат ASM в количестве 5-20 мас.% по отношению к исходной смеси реагентов, реакцию проводят при мольном соотношении анилин : альдегид = 1:1-2, в автоклаве при 120-180°С, в течение 6 ч, в растворе диметилформамида.

Изобретение описывает способ получения 2,3-диалкилхинолинов взаимодействием анилина с альдегидами в присутствии катализатора на основе цеолита, характеризующийся тем, что в качестве катализатора используют цеолит Y в Н-форме, реакцию анилина с алифатическими альдегидами (пропионовый или масляный) проводят в присутствии 10-20% мас.

Изобретение относится к cпособу каталитического получения 2,3-диалкилхинолинов взаимодействием анилина с альдегидами, характеризующемуся тем, что в качестве катализатора используют аморфный мезопористый алюмосиликат ASM в количестве 5-20 мас.% по отношению к исходной смеси реагентов, реакцию проводят при мольном соотношении анилин : альдегид = 1:1-2 в автоклаве при 120-180°С в течение 6 ч в растворе хлорбензола.

Изобретение относится к новым производным ципрофлоксацина общей формулы (I), проявляющим антибактериальные свойства. Технический результат: получены новые производные ципрофлоксацина общей формулы (I), которые могут быть использованы в качестве антибактериальных средств.

Изобретение относится к области органической химии, а именно к способу получения замещенных хинолинов указанной ниже формулы, где R1 = CH3, R2 и R3 = H; R1 = CH2СH3, R2 = CH3 и R3 = H; R1 = CH2СH3, R2 = Н и R3 = CH3; R1 = CH2CH2СH3, R2 = CH2CH3 и R3 = H; Х = Н, о-СН3, м-СН3, п-СН3, о-С2Н5, о-Cl, м-Cl, п-Cl, п-ОМе, о-ОН, из анилина, отличающийся тем, что замещенные анилины формулы XC6H4NH2, где X - указанное выше, подвергают взаимодействию с 1,2-диолами (1,2-этиленгликолем, 1,2-пропандиолом или 1,2-бутандиолом) и CCl4 в присутствии катализатора, выбранного из ряда FeCl3⋅6H2O, FeCl3, FeCl2⋅4H2O, Fe(C5H5)2, Fe(acac)3, Fe(OAc)2 и Fe2(CO)9, при мольном соотношении [катализатор]:[анилин]:[CCl4]:[1,2-диол] = 1:100:200:400, при 150°С в течение 8 ч.

Изобретение относится к способу получения 2,2,4-триметил-1,2-дигидрохинолина путем конденсации анилина с ацетоном в присутствии гетерогенного катализатора, отличающийся тем, что в качестве катализатора используют микро-мезо-макропористый цеолит H-Y-MMM и реакцию проводят при температуре 60-230°С, концентрации катализатора 5-20% и времени реакции 6-23 ч.

Изобретение относится к соединению формулы I или его фармацевтически приемлемой соли, в котором R1, R5 независимо выбраны из Н; R2, R3 и R4 выбраны из Н и цикла А, причем один из R2, R3 или R4 обязательно представляет собой цикл А; цикл А представляет собой 6-членное моноциклическое или 10-членное бициклическое ароматическое кольцо, необязательно содержащее 1 гетероатом, представляющий собой N, при этом цикл А может быть необязательно замещен 1-3 заместителями, независимо выбранными из галогена, ОН, СООН, C1-С6-алкила, C1-С6-алкокси, -С(О)C1-С6-алкила, -NO2; цикл В представляет собой 5-6-членное неароматическое кольцо, необязательно содержащее 1 гетероатом, представляющий собой О, причем цикл В может быть необязательно замещен 1-3 заместителями, независимо выбранными из -C1-С6-алкила, -С(O)С1-С6-алкила, -C1-С6-алкокси; R6 выбран из Н или С1-С6-алкила, R7 представляет собой Н или -(Z)m-(D)p, где независимо друг от друга m=0-1, р=0-1, при этом не может быть m=р=0; Z выбран из С1-С6-алкила; D представляет собой 5-6-членное неароматическое кольцо, возможно содержащее один гетероатом N, причем цикл D может быть необязательно замещен одним заместителем, выбранным из С1-С6-алкила, C1-С6-алкокси.

Изобретение относится к органической химии, а именно к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный, валерьяновый), характеризующееся тем, что в качестве катализатора используют цеолит Ymmm в Н-форме и реакцию проводят в проточном реакторе с неподвижным слоем катализатора при 250-350°С, объемной скорости подачи сырья 2-10 ч-1, атмосферном давлении, в токе азота, при мольном соотношении анилин : альдегид = 1:2. Технический результат: упростить синтез производных тетрагидрохинолина и снизить энерго- и материалоемкость процесса гетероциклизации. 1 з.п. ф-лы, 3 пр., 1 табл.
Наверх